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Myxozoans are cnidarian parasites of primarily freshwater and marine fish, with 

some being important pathogens of aquacultured fish species worldwide. Their life cycles 

have waterborne actinospores released from aquatic annelid definitive hosts and 

myxospore stages in fish intermediate hosts. 

In the southeastern United States, catfish aquaculture is burdened by annual losses 

to a myriad of infectious diseases.  Henneguya ictaluri, the causative agent of 

proliferative gill disease in channel catfish Ictalurus punctatus and female channel catfish 

x male blue catfish Ictalurus furcatus hybrids, is the most commonly diagnosed parasitic 

disease of catfish in Mississippi. Other myxozoans infect these ictalurid fish, but their 

impact on catfish production is unknown. 

Surveys of actinospores from the oligochaete Dero digitata and myxospore stages 

from fish revealed an unexpected diversity for these production systems.  Six genetically 

distinct actinospores representing four collective groups were observed from D. digitata. 

Herein, two novel Henneguya spp. are described from the gills and a novel Unicauda sp. 

is described from the intestinal tract of channel catfish. One Henneguya sp. was linked to 
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its actinospore stage and represents the fourth known life-cycle in the genus.  In addition 

to catfish, smallmouth buffalo Ictiobus bubalus polycultured with catfish were examined 

and two Myxobolus spp. were characterized from the gills.  Phylogenetic analyses 

strongly support a clade of ictalurid Henneguya spp. and a clade of catostomid 

Myxobolus spp.  Although diverse, H. ictaluri is the only myxozoan in catfish attributed 

to significant losses. 

With no feasible method of control or treatment, investigations into less 

susceptible fish were initiated and showed promise.  Infectivity trials characterizing H. 

ictaluri development in channel, blue, and hybrid catfish were performed. Channel 

catfish were suitable hosts with myxospores developing in the gills by six weeks and 

persisting for at least 14 weeks.  In hybrid catfish arrested or limited development was 

observed with no pseudocysts observed during Trial 1 and only two at 14 weeks during 

Trial 2.  These results may suggest a possible way of decreasing losses attributed to PGD 

through hybrid catfish monoculture or fish crop rotation to reduce the number of 

infectious myxospores released into the pond. 
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1 

CHAPTER I 

INTRODUCTION 

1.1 Channel catfish aquaculture 

Channel catfish (Ictalurus punctatus) is the most extensively cultured freshwater 

fish in the United States and is integral to the economies of several southeastern states 

(Wellborn 1988; Hargreaves 2002; Stankus 2010; USDA 2012).  From the industry’s 

beginnings in the 1960s, extensive growth has occurred in the states occupying the lower 

flood plain of the Mississippi River, an area more commonly referred to as “the Delta.” 

The culture of channel catfish across Alabama, Arkansas, Louisiana and Mississippi 

accounts for 95% of the industry’s total production, with sales totaling $423 million in 

2011 (USDA 2012).  Mississippi accounts for approximately 70% of the total industry, 

with nearly 55,500 water surface acres dedicated to production in 2011 (Robinson and 

Avery 2000; USDA 2012).  Flavorful fillets, dependable breeding, uncomplicated 

propagation and efficient feed to protein conversion rates make the channel catfish a 

reliable source of animal protein (Wellborn 1988; Stankus 2010). Recent declines in 

channel catfish production have been attributed to rising feed costs, influenced primarily 

by increased prices of corn and soybeans, both critical components of catfish diets 

(Stankus 2010). 

In the 1980s, a growing market for high quality animal protein led to escalated 

fish demand and necessitated more intensive production strategies.  This resulted in 
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higher stocking rates, larger production ponds, increased feeding rates, and the implement 

of multi-batch cropping systems.  These management practices, designed to increase 

production, have also created ideal scenarios for the spread of infectious disease 

(Hargreaves 2002; Tucker and Hargreaves 2004). 

1.2 Proliferative gill disease 

Proliferative gill disease (PGD) is caused by the myxozoan parasite Henneguya 

ictaluri.  Often associated with morbidity and high mortality in fingerling and adult 

channel catfish, PGD was first reported from catfish aquaculture in the southeastern 

United States in the early 1980s (Smith and Inslee 1980; Bowser and Conroy 1985; 

Bowser et al. 1985; Kent et al. 1987).  Characterized by swollen gill lamellae, 

chondrolysis, multifocal interlamellar hyperplasia of the branchial epithelium and 

anorexia, PGD is the third most commonly diagnosed infectious disease and the most 

prevalent parasitic disease of channel and hybrid catfish submitted to the Aquatic 

Research and Diagnostic Laboratory at the Thad Cochran National Warmwater 

Aquaculture Center, Stoneville, MS (Figure 1.1) (Bowser and Conroy 1985; Bowser et al. 

1985; MacMillan et al. 1989; Khoo et al. 2012).  The inflamed and severely infected gill 

lamellae are often clubbed and fused resulting in a loss of surface area compromising 

respiratory function (Bowser and Conroy 1985; Bowser et al. 1985; Burtle et al. 1991; 

Kent et al. 1987; MacMillan et al 1989; Styer et al. 1991; Wise et al. 2008). In the catfish 

aquaculture, PGD is more commonly referred to as “hamburger gill disease” on account 

of the swollen and mottled appearance of heavily infected gills, which resembles bloody 

ground hamburger meat (Killian 1994). During an outbreak, PGD is often diagnosed 

pond-side by farmers, noting the presence of fish piping at the water surface and 
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swimming listlessly near aerators, both indicators of respiratory distress.  Pond-side 

diagnosis by farmers whose operations endure yearly outbreaks of PGD might result in a 

lower estimation of actual prevalence of the disease (Wise et al. 2004). 

 

Figure 1.1 Percent of disease case submissions with PGD submitted to the Aquatic 
Research and Diagnostic Lab at the Thad Cochran National Warmwater 
Aquaculture Center in Stoneville, MS from 2001-2011. 

 

Most clinical outbreaks of PGD occur in the spring, with a lower incidence in the 

fall, when the water temperatures are between 15 and 20°C.  This seasonal pattern may 

be associated with ideal temperature ranges for either the development of the parasite or 

propagation of the oligochaete host, Dero digitata, a benthic oligochaete ubiquitous in 

catfish ponds (Pote et al. 2012; Wise et al. 2004).  Dero digitata, is the predominant 

oligochaete observed in benthic samples collected from ponds experiencing epizootics.  

The population of D. digitata in ponds with clinical outbreaks of PGD is significantly 
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greater than ponds with subclinical outbreaks or no signs of disease (Bellerud et al. 

1995).  The increased prevalence of H. ictaluri in D. digitata from ponds with clinical 

PGD and the static pond environment allows for continuous exposure of the resident fish 

to the infective actinospore stage. Although actinospores of other myxozoan species have 

been shown to retain viability at low temperatures, the actinospores of H. ictaluri are 

short lived at normal environmental temperatures and lose viability after 1-2 days 

(Markiw 1992; Wise et al. 2004; Wise et al. 2008).  

Unlike other myxozoans, where mature plasmodia are the root cause of disease 

(Whitaker and Kent 1991), the catfish host has a limited response to the myxospore stage 

of H. ictaluri. In heavy infections, large numbers of plasmodia can mechanically disrupt 

gill function, but in general, a majority of the damage associated with H. ictaluri stems 

from the severe inflammatory response associated with the initial penetration and 

proliferation of the actinospore stage.  Prolonged and repeated exposure to high numbers 

of H. ictaluri actinospores results in an increase in clinical severity of PGD in naïve fish.  

Recent research has demonstrated that naïve fish held in net pens and placed in ponds 

with active outbreaks develop clinical PGD, sometimes in as little as 24 hours (Wise et 

al. 2008; Griffin et al. 2010).  Similarly, fish held in fiberglass tanks and exposed to 

infectious pond water over the course of several days developed clinical PGD.  However, 

fish exposed to a single dose of infectious pond water, then removed from the source of 

infection had fewer chondrolytic lesions and less severe gill inflammation compared to 

fish maintained in infectious pond water over the same period.  In addition, once removed 

from the source of infection, callous formation was observed at the point of chondrolysis, 
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suggesting that in the absence of infectious agents, recovery and healing is initiated 

quickly (Wise et al. 2008). 

Under optimal conditions, D. digitata populations double every 4 to 7 days 

(Mischke and Griffin, 2011).  In addition, vertical transmission of myxozoans during 

asexual reproduction of infected oligochaetes has been demonstrated in laboratory studies 

(Morris and Adams 2006).  This phenomenon may further exacerbate actinospore levels 

in the ponds, as infected oligochaete populations can increase rapidly.  These factors all 

play a role in PGD severity and likely contribute to disease severity of other myxozoan 

infections in intensively managed aquaculture systems. 

1.3 Myxozoa 

Myxozoans are a unique group of metazoan parasites of both veterinary and 

economic importance, especially in commercial aquaculture.  The Myxozoa encompass 

approximately 2,000 species in 62 genera (Lom and Dyková 2006).  These spore-forming 

parasites primarily infect fish (freshwater and marine), with alternate life cycle stages that 

infect aquatic annelids (oligochaete or polychaete).  While uncommon, there are also 

reports of myxozoans from terrestrial mammals, reptiles and birds are limited (Dyková et 

al. 2007; Prunescu et al. 2007; Bartholomew et al. 2008; Roberts et al. 2008).  The 

majority of myxozoans that infect fish are innocuous to the fish host, there are several 

notable exceptions.  These exceptions are most often noticed in commercially raised fish 

species, where intensive management practices such as high stocking densities and multi-

batch production systems produce conditions conducive to efficient parasite propagation 

and transmission (Kent et al. 2001; Lom and Dyková 2006). 
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To date, more than 50 myxozoan life cycles have been confirmed, linking the 

actinosporean stage shed by the annelid host with the myxosporean stage in the fish host.  

Myxobolus cerebralis and Ceratonova (Ceratomyxa) shasta, both myxozoan parasites of 

salmonid fish, have been studied extensively, with molecularly confirmed life cycles 

linking both stages of the parasites to their respective hosts and working laboratory 

models facilitating investigations into modes of transmission and developmental studies 

(Markiw and Wolf 1983; Wolf and Markiw 1984; Meaders and Hendrickson 2009). 

Most experimentally and molecularly confirmed myxozoan life cycles in fish are 

indirect, involving a fish intermediate host and an annelid definitive host with 

morphologically distinct stages in each host.  Fish to fish transmission is rare, and only 

documented for Enteromyxum leei (Eszterbauer et al. 2015). 

The actinospores are pelagic, non-motile stages shed from annelid hosts 

(oligochaetes in freshwater and polychaetes in marine environments) that when released 

into the water column encounter the fish host and initiate infection via penetration of host 

tissues (Kent et al. 2001; Køie 2000; Lom and Dyková 2006).  Encysted myxospore 

stages develop within the fish host in a variety of interior and exterior tissue sites.  

Myxospores are released into the aquatic environment during routine sloughing of the 

epithelium (exterior plasmodia) or following the death of the animal (interior plasmodia).  

The released myxospores are ingested during foraging by the annelid hosts and 

actinospores develop inside a pansporocyst within the epithelial cells lining the annelid’s 

gastrointestinal tract.  The life cycle is completed when, upon maturation, actinospores 

are released into the water column with the annelid’s feces and encounter the appropriate 
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fish host (Wolf and Markiw 1983; Hamilton and Canning 1987; Kent et al. 2001; Gilbert 

and Granath Jr. 2003). 

The taxonomic placement of myxozoans remains in a constant state of flux due to 

past classification systems.  Initially, myxospores (Class: Myxosporea) and actinospores 

(Class:  Actinosporea) were thought to be two separate classes of organisms, which were 

categorized solely on morphological characteristics of myxospores from fish (Kent et al. 

2001).  The pioneering work of Markiw and Wolf was the first to recognize that 

Myxosporea and Actinosporea were not distinct classes of organism, but rather separate 

components of an indirect life cycle.  Their work identified two morphologically distinct 

stages in the life cycle of M. cerebralis, a triactinomyxon actinospore stage in the benthic 

freshwater oligochaete Tubifex tubifex and a myxospore stage in salmonid fish (Wolf and 

Markiw, 1984).  This work was later confirmed with the advent of 18S rDNA sequencing 

(Wolf et al. 1986).  The inclusion of 18S rRNA gene sequences when new species are 

described has made it possible to link the actinospore and myxospore stages of previously 

unknown life cycles (Andree et al. 1997; Griffin et al. 2008; Iwanowicz et al. 2008; Work 

et al. 2008; Griffin et al. 2009a; Griffin et al. 2009b; Camus and Griffin 2010; Walsh et 

al. 2012).  Long considered protists, recent findings have identified myxozoans to be 

metazoans closely related to the cnidarians, citing ultrastructural similarities between 

myxozoan polar filaments and cnidarian nematocysts and 18S rDNA gene sequences 

(Siddall et al. 1995; Andree et al. 1997; Holzer et al. 2004; Whipps et al. 2004; Fiala 

2006; Ringuette et al. 2011; Evans et al. 2012).  Suppression of the previous 

classification schemes has been suggested and priority has been given to myxosporean 

stages when characterizing novel myxozoan species.  Meanwhile, collective 
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morphological groups (aurantiactinomyxon, triactinomyxon, neoactinomyxon, etc.) are 

used when classifying newly identified actinospore stages (Siddall et al. 1995; Kent et al. 

1994; Kent et al. 2001). 

1.3.1 Henneguya ictaluri 

Myxozoans of the genus Henneguya Thélohan, 1892 are parasites of 

predominantly freshwater fish, but some marine forms exist (Minchew 1977; Pote et al. 

2000; Eiras 2002; Griffin 2008; Li 2012).  Globally, over 200 Henneguya spp. parasitize 

numerous organ systems in a variety of fish hosts. Myxospores of Henneguya spp. are 

ellipsoid or spindle-shaped, possess two elongated polar capsules and are characterized 

by tapering caudal processes (Pote et al. 2000; Eiras 2002). 

Eight species of Henneguya have been documented in commercially farmed 

channel catfish (Ictalurus punctatus) based on pseudocyst and myxospore morphology, 

as well tissue predilection in the fish host (Table 1.1).  Of the eight Henneguya spp. 

infecting channel catfish, only Henneguya exilis and H. ictaluri have molecularly 

confirmed life histories linking the myxospore stages in the fish host to the actinospore 

stages in the oligochaete host (Dero digitata) (Lin et al. 1999; Pote et al. 2000).  The 

remaining six species have unknown oligochaete hosts and their pathogenicity in fish has 

not been thorogouhly investigated. 
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Table 1.1 Overview of Henneguya spp. reported from channel catfish. 

Henneguya spp. Fish host(s) Oligochaete host Site in fish Reference: 
H. adiposa Ictalurus 

punctatus 
N/A Adipose fin Current 1979 

H. diversis I. punctatus N/A Barbels, pectoral fins, liver 
and kidneys 

Minchew 1977 

H. exilis I. punctatus,  Dero digitata Gills Kudo 1929 
H. ictaluri I. punctatus D. digitata Gills Pote et al. 2000 
H. limatula I. punctatus N/A Gall bladder Minchew 1977 
H. longicauda I. punctatus N/A Gills Minchew 1977 
H. postexilis I. punctatus N/A Gills Minchew 1977 
H. sutherlandi I. punctatus N/A Skin Griffin et al. 2008 

 

Of the multiple Henneguya spp. that infect channel catfish, only one has been 

linked to severe losses.  Initially, interlamellar and intralamellar Henneguya myxospores 

were observed in farm-raised catfish, with the interlamellar forming species attributed to 

more severe losses in fingerlings and respiratory distress in heavily infected market size 

fish (McCraren et al. 1975).  From 1981 through 1983, commercial channel catfish ponds 

experienced a series of epizootics of unknown cause in fingerlings and market size fish.  

Histological examination of fish collected from ponds with active disease oubtreaks 

revealed myxosporean plasmodia located in the gills (Bowser and Conroy 1985).  In 

some instances, mortality rates in ponds reached 100%.  Clinical signs included 

multifocal interlamellar hyperplasia, distortion of gill lamellae, listless swimming and 

respiratory distress with fish localized near aerators (Bowser and Conroy 1985; Griffin et 

al. 2008; Kent et al. 1987; Wise et al. 2008). 

A myxozoan origin of PGD was initially established by the exposure studies of 

MacMillan et al. (1989).  Specific-pathogen-free (SPF) channel catfish were exposed to 

sediment collected from the water/benthos interface from ponds with active PGD 

outbreaks.  This resulted in infection with a myxosporean parasite that was detectable by 

histological processing and microscopic examination of tissues collected over a period of 
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2 months.  Fish exposed to sediments collected from ponds without an active epizootic 

did not develop PGD (MacMillan et al. 1989).   

A severe inflammatory response with marked congestion at the gills, indicative of 

PGD, was observed as early as 48 hours after exposure to pond sediment. Microscopy 

displayed a profuse influx of inflammatory cells of differing types, similar to those 

observed in histological examinations of naturally infected PGD fish.  This multifocal 

inflammatory response contained a mix of lymphocytes, macrophages and neutrophils 

(Bowser and Conroy 1985; MacMillan et al. 1989; Griffin et al. 2008; Wise et al. 2008).  

In this study, the number of inflammatory cells and their location varied.  Some gill 

arches possessed small numbers of foci limited to only a few filaments, while in other 

arches every filament was affected.  Closer examination of gill tissues after 48-hour 

exposure to pond sediments revealed uninucleate cells, 8-10 µm diameter, with a 

basophilic nucleus and eosinophilic cytoplasm, identified as the primary cell of the 

myxosporean parasite.  Plasmodial stages like those observed by Bowser and Conroy 

(1985) were observed approximately 3-6 d post exposure and were characterized by 

numerous secondary cells, 2-4 µm in diameter, surrounding the primary cell (MacMillan 

et al. 1989).  Disease severity was determined to be proportional to the number of 

developing plasmodia within each filament.  Filaments containing 1-4 plasmodia was 

considered a mild infection, while greater than 4 plasmodia per filament, with 75% of all 

filaments containing plasmodia, resulting in death (MacMillan et al. 1989). 

Surveys of sediment from ponds experiencing PGD epizootics revealed a diverse 

benthic fauna. The most abundant organism observed in sediment samples from PGD 

outbreaks was D. digitata, a member of the Naididae.  Microscopic examination of 
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squashes of D. digitata revealed the presence of actinospore stages of a myxozoan 

parasite (Burtle et al. 1991; Bellerud et al. 1995; Smith 2001).  These actinospores were 

characterized by the presence of 3 apical polar capsules, a sporoplasm containing 

approximately 32 nuclei, a triangular spore body, 3 valves and 3 blunt shaped caudal 

processes (Burtle et al. 1991; Bellerud 1993). Aurantiactinomyxon type actinospores 

were found in the gut wall of infected D. digitata and in the water column of mud 

samples collected from ponds experiencing a PGD outbreak. 

Transmission studies conducted by Styer et al. (1991) established a relationship 

between Dero digitata infected with the unknown species of Aurantiactinomyxon and 

channel catfish.   PGD was induced in channel catfish exposed to D. digitata isolated 

from mud dredged from the bottom of a pond during a PGD epizootic.  Similarly, PGD 

was induced in channel catfish exposed to aurantiactinomyxon actinospores collected 

from squashes of D. digitata.  Granulomatous inflammation and developing stages 

indicative of PGD were observed histologically, suggesting a myxozoan life cycle 

involving the channel catfish and D. digitata (Bowser and Conroy 1985; Burtle et al. 

1991; Styer et al. 1991; Wise et al. 2008).   

Dero digitata is host to a multitude of actinospore types found in commercial 

catfish ponds.  Early work demonstrated that populations of D. digitata released a greater 

variety of myxozoan fauna in ponds with active outbreaks of PGD than ponds without 

any signs of disease (Bellerud 1993; Bellerud et al. 1995; Burtle et al. 1991).  Later, 18S 

rDNA sequence linked the aurantiactinomyxon type actinospore from D. digitata to the 

myxospore stage of a previously undescribed myxozoan parasite, Henneguya ictaluri 

(Pote et al. 2000).  Interlamellar cysts containing mature myxospore stages of H. ictaluri 
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were observed in the gills of an experimentally infected channel catfish 3 months post 

exposure.  Spindle shaped myxospores with split caudal processes were observed on wet 

mounts with an average spore size of 23.9 µm x 6.0 µm.  Two elongate polar capsules of 

roughly identical length and width (8.1 µm x 2.5 µm) occupied the spore body.  Posterior 

to the spore body, completely split caudal processes extended a length of 63 µm with the 

split being located immediately posterior to the spore body (Pote et al. 2000). 

Investigations into the life cycle of H. ictaluri using indirect fluorescent antibody 

tests suggest multiple portals of entry.  Entry points include gills, skin and buccal cavity, 

with developing organisms detected across multiple organ systems over a period of 4 

days.  Fluorescent detection of developing organisms was observed in the anterior and 

poster kidneys, stomach, spleen and liver, with the strongest fluorescence observed in the 

gills, suggesting the gills are the preferred site of development for early stages in the H. 

ictaluri life cycle (Belem and Pote 2001).  Pote and Waterstrat observed a motile 

amoeboid stage released from the aurantiactinomyxon type actinospores when exposed to 

gill filaments and mucus of channel catfish (1993).  While the gills seem to be the 

primary site of development of H. ictaluri in the fish host, little is known of the precise 

chemical cues between fish and parasite that initiate infection.  Previous studies have 

found that rainbow trout mucus can be enough to induce the extrusion of polar filaments 

of actinospore stages of M. cerebralis.  El Matbouli et al. (1999) used electron 

microscopy to describe host specific triggering of polar filament extrusion and 

actinospore attachment during the early stages of M. cerebralis infection in susceptible 

rainbow trout.  Triactinomyxons were observed attaching to the epithelium of the fish and 

initiating infection via penetration of host epithelial surfaces as soon as 1 hour post 
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exposure.  However, exposing triactinomyxons to mucus of non-salmonid fish species 

failed to induce polar filament extrusion, suggesting some level of host specificity (El-

Matbouli et al. 1999). 

1.3.2 Diagnosis of PGD 

1.3.2.1 Polymerase chain reaction for the detection of H. ictaluri 

Diagnostic polymerase chain reaction assays for the detection of myxozoans in 

fish, oligochaetes and the aquatic environement have been developed for numerous 

myxozoan species (Andree et al. 1997; Andree et al. 1998; Palenzuela et al. 1999; 

Hanson et al. 2001; Whitaker et al. 2005; Caffara et al. 2009).  Hanson et al. (2001) 

compared 18S rDNA sequences of four different actinospore morphotypes from D. 

digitata to establish a polymerase chain reaction assay for the molecular confirmation of 

PGD.  The PCR primers amplified a 104 base pair product specific to H. ictaluri (syn. 

Aurantiactinomyxon ictaluri), targeting a highly variable region within the 18S rRNA 

gene.  The PCR assay is capable of detecting parasite DNA in fish tissue, oligochaetes 

and environmental pond water samples (Whitaker et al. 2001; 2005).  In addition, the 

PCR assay was more sensitive than conventional diagnostic methods, namely gross 

examination of gill biopsies and histopathology.  Used in conjunction with these other 

diagnostic methods, the PCR assay provides molecular confirmation of the presence of 

the parasite (Whitaker et al. 2001; 2005).   

While molecular detection of PGD in fish tissues is a valuable confirmatory 

diagnostic, the ability to detect actinospores in the environment provides more practical 

information catfish producers can use to determine whether or not it is safe to introduce 

naïve fish into a pond, or to restock a pond after an outbreak.  The detection of the 
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parasite in the resident oligochaete population is labor intensive and given the patchy 

distribution of D. digitata in the pond can be hit or miss.  Alternatively, detecting the 

parasite in pond water is independent of the oligochaete distribution and can more 

accurately rank the risk of PGD to naïve fish introduced to the pond.  Detecting the 

infectious stage in the water can identify if an outbreak is likely, or more practically, to 

assess actinospore levels following an outbreak where losses have occurred.   

The PCR assay developed by Hanson et al. (2001) and validated by Whitaker et 

al. (2001) was used in a survey of 40 commercial catfish ponds.  Of the 40 ponds 

sampled, 32 had H. ictaluri positive fish, 35 had H. ictaluri positive oligochaetes and 25 

had H. ictaluri positive water.  The PCR test for the water and oligochaetes detected the 

presence of H. ictaluri in all ponds with PGD-positive fish.  Of the 40 ponds, only 3 were 

negative for H. ictaluri in the fish, water and oligochaetes, evidence of the widespread 

nature of H. ictaluri.  Detecting H. ictaluri in pond water offered a more convenient tool 

than sentinel fish exposures for determining when it is safe to restock ponds following a 

PGD outbreak (Whitaker et al. 2005). 

Conventional endpoint PCR is useful for detecting the presence of target DNA, 

but yields only qualitative results.  Conversely, real-time quantitative PCR (qPCR) allows 

for the relative enumeration of target DNA.  In addition to the ability to quantify target 

DNA, qPCR provides faster results by negating the need of postreaction processing.  As 

such, qPCR serves as a reliable tool for the detection of pathogens in several areas of 

study. 

Real-time quantitative PCR assays have been employed to detect multiple 

myxozoan species in host tissue and environmental water samples (Cavender et al. 2004; 
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Hallet and Bartholomew 2006; Griffin et al. 2009c; True et al. 2009; Jorgensen et al. 

2011).  Diagnosing and evaluating PGD risk has increased with the development of a 

real-time PCR assays to detect both the myxospore stage in host tissue and the 

actinospore stage found in pond water. Previous diagnostic techniques for detecting PGD 

consist of evaluating wet mounts of 40-80 gill filaments for the presence of chondrolytic 

lesions indicative of PGD, histological sectioning of gill tissue and amplification of a 104 

base pair product of the H. ictaluri 18S ribosomal RNA gene (Griffin et al. 2008).  While 

quick to perform, wet mounts are subjective since only a small portion of the gills are 

examined and infections could be missed if low numbers of parasites are present.  

Histology is similarly limited.  Endpoint PCR has been shown to be a more sensitive 

diagnostic tool for detecting the presence of H. ictaluri in fish tissue, pond water, and the 

oligochaete host (Hanson et al. 2001; Whitaker et al. 2005).  However, the biological 

significance of qualitative PCR positive results have not been adequately evaluated.   

Conversely, research has demonstrated a TaqMan probe based quantitative real-

time PCR assay for H. ictaluri provides a quantifiable method of detecting the parasite 

(Griffin et al. 2009c).  The assay was sensitive enough to detect a single actinospore, 

which allows for the detection of early stages of the parasite as soon as 24 hours post 

exposure.  Conversely endpoint PCR, histology, or wet mounts often fail to recognize 

these early stages. 

1.3.2.2 Monitoring program 

The use of sentinel fish in evaluating the PGD status of a pond has been well 

described (Wise et al. 2004; 2008).  Briefly, sentinel fish are housed in mesh cages for 7 

days, after which gill biopsies (40-80 filaments) are examined for the presence of 



www.manaraa.com

 

16 

chondrolytic lesions indicative of PGD (Wise et al. 2004; 2008).  Lesion scores are based 

on the percentage of filaments with at least one chondrolytic lesion in the filamental 

cartilage.  Scores of 1 to 5% are considered mild, with minimal risk of mortalities.  A 

score of 6 to 15% is moderate, while a lesion score greater than 15% represents a severe 

infection with a high risk of mortality in naïve fish introduced to the system.   In brief, the 

lesion scoring system gives an indirect estimation of the number of parasites present in 

the water column.  

This scoring system allows producers and fish health professionals to evaluate the 

risk of losing fish newly stocked into the system or following an outbreak.  To gain 

insight into the progression of the outbreak, a second and sometimes third exposure of 

sentinel fish is needed.  The use of sentinel fish along with the grading scale of severity is 

an effective diagnostic tool, but is labor intensive, requires at least 1 week for results and 

can be inconclusive if the fish die before assessment or if the cage system fails (Wise et 

al. 2004; 2008).   Alternatively, the qPCR assay provides a direct, real-time estimate of 

actinospore levels in the pond, is not as labor intensive, and can provide results in as little 

as 24 hours (Whitaker et al. 2005; Griffin et al. 2008; Griffin et al. 2009c). However, 

multiple sampling events for all diagnostic methods allow for observing trends and can 

be used to better assess outbreak severity and recovery. 

1.3.3 Control and treatment of PGD 

1.3.3.1 Chemical control 

At present, there are no chemotherapeutants or prophylactic treatments for 

myxozoan infections, as those tested in fish species have shown limited efficacy. 

Fumagillin is perhaps the most well studied drug used in the treatment of myxozoan 
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infections in fish (Molnár et al. 1987; Hedrick et al. 1988; El-Matbouli and Hoffmann 

1991; Kent and Dawe 1994).  Prepared feeds containing fumagilin (dicyclohexylamine) 

to treat M. cerebralis in rainbow trout resulted in decreased infection rates and reduced 

clinical disease (El-Matbouli and Hoffmann 1991; Wagner 2002).  Moreover, fumagillin 

was successful in treating chinook salmon Oncorhynchus tshawytscha experimentally 

infected with the microsporidian parasite Loma salmonae.  Daily doses of 10 mg/kg of 

fish was incorporated into the diet and fed to infected salmon for 30 days.  Loma 

salmonae was undetected in all treated fish (Kent and Dawe 1994).  The drug was also 

effective in preventing proliferative kidney disease in experimentally infected chinook 

salmon at treatment doses of 0.5 and 1.0 g/kg of feed (Hedrick et al. 1988). Lastly, 

Sphaerospora renicola infection of common carp Cyprinus carpio has been successfully 

reduced with fumagillin incorporated into the diet at 0.1% of feed fed (Molnár et al. 

1987). Although fumagillin has been shown successful in preventing or reducing 

myxozoan infections in numerous fish species, the effectiveness has been largely studied 

when given at the time of initial penetration and proliferation the effectiveness over the 

course of infection has not been adequately evaluated (El-Matbouli and Hoffmann 1991).  

In some studies fumagillin has had limited efficacy and mortalities in treated fish has 

raised concerns of drug related toxicity (Wagner 2002). 

 Incorporation of nicarbazin into the diets of Atlantic salmon Salmo salar was 

efficacious against Kudoa thyrsites with dietary nicarbazin concentrations of at least 2.5 

gram per kilogram.  When fed at concentrations of 10 and 25 gram per kilogram, dietary 

nicarbazin was associated with adverse effects in Atlantic salmon, such as anorexia and 
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mortality, which subsided after returning the fish to a non-medicated diet (Jones et al. 

2012).   

Quinine and salinomycin appear to be efficacious in the treatment of Henneguya 

sp. when given orally to naturally infected tapir Gnathonemus petersii (Dohle et al. 

2002).  Oral administration of salinomycin, resulted in shrinkage of plasmodia and 

enlargement of pansporoblastic suture elements in gill trophozoite stages as early as three 

days post-treatment.  Polar capsules and polar filaments were malformed and eventually 

undetectable.  Nine days post-treatment, the pansporoblasts were no longer present.  

Quinine displayed similar deleterious effects against Henneguya sp. in infected tapir fish.  

Cytoplasmic vacuolization was observed in developing plasmodial stages and destruction 

of polar capsules was observed 6 days post-treatment.  Severing of parasite and host 

membranous connections was also evident and no parasite stages were detected by 

microscopy 9 days post-treatment.  Moreover, salinomycin and quinine displayed no 

adverse effects in tapir fish in this short-term study (Dohle et al. 2002).   

Proposed control for myxozoan infections in fish often focuses on eliminating the 

oligochaete host through chemical control, biological control or strategic management 

strategies.  Breaking the life cycle by eradicating or lowering the number of infected 

oligochaetes could alleviate actinospore exposure levels and may reduce clinical 

manifestations of disease (Tucker et al. 2004).  Chemical treatments of actinospores in 

the water can provide temporary relief.  However, unless the oligochaete host is 

eliminated, any actinospores eradicated from the water column will be immediately 

replaced by oligochaetes still present in benthos.  As such, in order to be effective, 

multiple treatments are required.  Formalin and potassium permanganate treatment of 
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water have been found to reduce the number of PGD related lesions in some instances, 

but there use as a chemical therapeutic is not practical in the production setting due to the 

high costs of multiple applications (Wise et al. 2004). 

  Several chemical therapeutics against D. digitata have been investigated in 

laboratory trials in attempts to identify management strategies to eradicate the 

oligochaete. Cultured D. digitata were exposed to Bayluscide® (niclosamide, 70% 

wettable powder, Bayer Chemical Co., Kansas City, Missouri, USA), Chloramine-T (N-

chloro-p-toluenesulfonamide, Halamid, H&S Chemical Co., Covington, Kentucky, 

USA), formalin (37% formaldehyde solution), hydrogen peroxide (H2O2), copper sulfate 

(CuSO4), potassium permanganate (KMnO4), rotenone (C23H22O6) and sodium chloride 

(NaCl) to test acute toxicity levels at 24 and 48 hours post treatment (Mischke et al. 

2001).  Though some of these chemical treatments showed promise in controlling D. 

digitata, the application of these compounds in the aquaculture setting is not practical for 

several reasons.  Required dosage of these compounds is often cost prohibitive for catfish 

producers and doses high enough to penetrate the dense organic matter in the pond bed 

can be lethal to the resident fish population (Mischke et al. 2001). 

1.3.3.2 Biological control 

Biological control of Myxobolus pseudodispar actinospores through predation by 

copepods has been shown to lead to a decreased number of triactinomyxon actinospores 

in laboratory controlled trials (Rácz et al. 2006).  Labeling triactinomyxons with 

fluorescent 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) and 

microscopically observing the feeding apparatus of copepods confirmed ingestion of 

actinospores.  Stained spores were detected in the alimentary tract of infected copepods 



www.manaraa.com

 

20 

2.5 hours post-exposure and most triactinomyxons exhibited polar filaments and 

structural damage to caudal processes.  To confirm the viability of copepod-ingested 

actinospores, SPF roach Rutilus rutilus fingerlings were fed copepods containing 

actinospores and necropsied 138 days post-infection to look for M. pseudodispar lesions 

in the musculature.  Developing plasmodia were not detected in the roaches challenged 

with copepods containing myxozoan actinospores, however, infection was observed in 

positive control fish exposed only to triactinomyxons (Rácz et al. 2006). 

Stocking of fathead minnows Pimephales promelas in catfish ponds has been 

proposed to control the D. digitata since a large portion of their diet consists of algae and 

oligochaetes.  In order to be effective, large numbers of minnows must be stocked in 

order to maintain a population large enough to have any measurable impact on 

oligochaete populations.  Unfortunately, predation of minnows by the larger catfish in the 

system make sustaining a large enough population a difficult task (Burtle 1998).   

Similarly, smallmouth buffalo Ictiobus bubalus have also been proposed as a 

method of biological control.  Smallmouth buffalo are opportunistic bottom feeders, 

known to feed on numerous benthic macroinvertebrates.  The polyculture of small mouth 

buffalo with catfish ponds has been suggested to lessen the incidence of PGD in the 

resident fish population (Steeby et al. 2006).  Recent research investigated the use of 

smallmouth buffalo as a biological control agent in 1-acre research ponds over 2 

consecutive production cycles.  Researchers stocked ponds (n=9) with 8,000 catfish 

fingerlings and 300 smallmouth buffalo.  Control ponds (n=9) were treated similarly but 

were not stocked with smallmouth buffalo.  Over the course of the 3-year study, there 

were no differences in the numbers of benthic organisms, actinospore concentrations or 
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disease severity in sentinel fish.  In addition, there were no differences in total feed fed or 

total weight harvested.  Under the conditions used in this study, the presence of 

smallmouth buffalo did not have a measurable effect on PGD incidence, severity or 

overall catfish production (Griffin et al. 2014) 

Given the limited success in treating PGD with chemotherapeutic drugs, 

management of the disease is focused on maintaining adequate dissolved oxygen levels in 

the pond with supplemental aeration, restricting feed during an outbreak and maintaining 

sufficient chloride levels to minimize osmotic stress.  While moving fish into a PGD free 

pond may reduce mortality, this practice has been considered unfavorable due to risks of 

introducing myxospores into a pond that has previously been PGD free.  However, 

research has shown PGD to be present at some level in nearly all catfish ponds in the 

spring of the year.  As such, the risk of actually introducing H. ictaluri into a naïve pond 

is likely minimal as truly naïve ponds are rare if nonexistent (Wise et al. 2004). 

Current efforts to establish the life cycle of H. ictaluri in the laboratory setting 

have been unsuccessful due to the inability to infect the oligochaete host, D. digitata.  

However recent progress made in propagating large numbers of the oligochaete offers 

researchers the ability to investigate the biological interactions between the myxospore 

and oligochaete host (Mischke and Griffin 2011).  The experimental maintenance of 

myxozoan life cycles has been achieved for few species of myxozoans (Wolf et al. 1986; 

Eszterbauer et al. 2000; Meaders and Hendrickson 2009). Laboratory maintained colonies 

of M. cerebralis and C. shasta have provided invaluable information regarding the 

biology of these myxozoans and their fish hosts (Wolf et al. 1986; Meaders and 

Hendrickson 2009;).  A readily available source of H. ictaluri myxospore and actinospore 
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stages would allow for advancement in the study of PGD in catfish and may provide 

additional insight into controlling the disease.  Establishment and maintenance of H. 

ictaluri in the laboratory warrants further study.  

1.3.3.3 Genetic control 

The culturing of a less susceptible catfish species has been examined as a method 

of reducing the incidence of PGD in commercial channel catfish ponds by limiting the 

number of myxospore stages released back into the system.  Blue catfish Ictalurus 

punctatus show resistance to numerous diseases of channel catfish that induce mortalities 

in aquaculture, such as enteric septicemia, channel catfish virus and PGD, making them 

an ideal candidate for a culture species (Beecham et al. 2010; Bosworth et al. 2003; 

Graham 1999; Griffin et al. 2010).  However, commercial culture of blue catfish has not 

been widely adopted due to several limiting production characteristics, including lower 

dress out, decreased maturation rates and poor spawning in captivity (Graham 1999).   

When compared to channel catfish and channel catfish  blue catfish hybrids, 

blue catfish exhibit a lower incidence of PGD related lesions following 7 day exposures 

to infectious pond water (Bosworth et al. 2003).  Repeated studies combining 

histopathology with real-time PCR data support the findings of Bosworth et al. (2003) 

with blue catfish having a significantly lower amount of PGD related lesions than 

channel catfish and channel catfish  blue catfish hybrids (Griffin et al. 2010).  

Compounding molecular evidence that blue catfish are refractory to PGD is supported by 

lower quantities of H. ictaluri DNA in gill filaments and blood of blue catfish than 

channel catfish and channel catfish  blue catfish hybrids (Beecham et al. 2010; Griffin et 
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al. 2010). Although blue catfish can develop PGD related lesions, it is rare and damage is 

to a much lesser extent than in concurrently challenged channels and hybrid catfish.  

Under experimental conditions, H. ictaluri DNA was undetectable in blue catfish gills by 

real-time PCR 14 days post exposure.  However comparatively large quantities of H. 

ictaluri DNA was still present in channel and hybrid catfish exposed concurrently.  This 

suggests blue catfish are inherently resistant to PGD and could serve to break the life 

cycle of H. ictaluri in a production system by alternating pond stocks with blue catfish 

(Bosworth et al. 2003; Beecham et al. 2010; Griffin et al. 2010).  However, given the less 

desirable production characteristics of blue catfish, their application as a rotating 

aquaculture crop has little chance of adoption.  Meanwhile, although hybrids can still 

become infected with H. ictaluri and suffer PGD related mortalities, there is anecdotal 

evidence that PGD outbreaks occur less often and are less severe in hybrid production 

ponds compared to traditional channel catfish production.  Previous studies have only 

looked at the early stages of H. ictaluri infection in blue and hybrid catfish and 

investigations into the development of mature myxospores in these fish have not been 

conducted.  Determining if H. ictaluri myxospores can develop and mature in hybrid 

catfish is a critical piece of information in regards to their role as a potential culture 

species and efforts to reduce the prevalence of H. ictaluri in catfish aquaculture. 
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CHAPTER II 

MOLECULAR AND MORPHOLOGICAL CHARACTERIZATION OF MYXOZOAN 

ACTINOSPORE TYPES FROM A COMMERCIAL CATFISH POND IN THE 

MISSISSIPPI DELTA 

2.1 Abstract 

The actinospore diversity of infected Dero digitata was surveyed (May, 2011) 

from a channel catfish (Ictalurus punctatus) production pond in the Mississippi Delta 

region for the elucidation of unknown myxozoan life cycles.  At present, only 2 

myxozoan life cycles have been molecularly confirmed in channel catfish, linking the 

actinospore stage from an aquatic oligochaete (D. digitata) and the myxospore stage from 

the catfish. In this study D. digitata (n=2,592) were isolated from oligochaetes collected 

from the bottom sediment of a channel catfish production pond. After 1-wk of daily 

observation, a total of 6 genetically different actinospore types were observed.  The 

collective groups were classified as 2 aurantiactinomyxons, 2 helioactinomyxons, 1 

raabeia, and 1 triactinomyxon.  Overall prevalence of myxozoan infections in the isolated 

oligochaetes was 4.4%.  Actinospores were photographed and measured for 

morphological characterization. Four previously undescribed actinospore-types were 

identified and characterized molecularly and morphologically.  Phylogenetic analysis 

revealed the raabeia and one of the helioactinomyxon (type 1) actinospores were closely 

related to the group of myxozoans known to parasitize ictalurids in North America.  To 
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date, no myxospores have been linked to the newly sequenced actinospores reported in 

this survey.  The morphological and molecular data generated from this study will assist 

in the identification of myxospore counterparts for these actinospore stages and aid in the 

elucidation of unknown myxozoan life cycles in closed production systems. 

2.2 Introduction 

The Myxozoa are an important group of metazoan spore-forming parasites.  Their 

complex life cycles primarily involve fish (freshwater and marine) and aquatic annelids 

(oligochaetes and polychaetes) or bryozoans.  Some 40 myxozoan species have been 

described in amphibians, reptiles, waterfowl and more recently mammals, but the most 

well studied are the >2,000 described myxozoans that cause disease in economically 

important fish species (Kent et al. 2001; Lom and Dyková 2006; Prunescu et al. 2007; 

Bartholomew et al. 2008; Roberts et al. 2008).  Since the confirmation of the Myxobolus 

cerebralis life cycle (Markiw and Wolf 1983), some 50 myxospore stages in fish have 

been linked to their corresponding actinospore stage in an annelid, either by experimental 

infection studies or molecular sequence data (El-Matbouli and Hoffmann 1989; 

Bartholomew et al. 1997; El-Mansy and Molnár 1997a, 1997b; Yokoyama 1997; Székely 

et al. 1998; Lin et al. 1999; Székely et al. 1999; Pote et al. 2000; Kallert et al. 2005; 

Bartholomew et al. 2006; Atkinson and Bartholomew 2009; Caffara et al. 2009).   

Surveys of actinospores from aquatic oligochaetes have been conducted in both 

wild and commercial aquaculture settings (Janiszewska 1955, 1957; Bellerud 1993; 

McGeorge et al. 1997; El-Mansy et al. 1998a, 1998b; Xiao and Desser 1998a, 1998b, 

1998c; Hallett et al. 1999; Negredo and Mulcahy 2001; Oumouna et al. 2003; Székely et 

al. 2004; Marcucci et al. 2009).  Similarly, catfish aquaculture in the southeastern United 
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States is known to sustain several myxozoan life cycles (Minchew 1977; Current 1979; 

Bellerud et al. 1995; Griffin et al. 2008).  At least 7 Henneguya spp. have been described 

in channel catfish (Ictalurus punctatus), the most notable being Henneguya ictaluri, the 

causative agent of proliferative gill disease (PGD) in channel and hybrid catfish (Pote et 

al. 2000; Bosworth et al. 2003; Griffin et al. 2010).  Since it was first reported in 1981, 

PGD has become the most commonly diagnosed parasitic disease in cultured channel 

catfish in the southeastern United States (Bowser and Conroy 1985; MacMillan et al. 

1989; Burtle et al. 1991; Styer et al. 1991; Wise et al. 2004).  True prevalence of this gill 

pathogen is likely underestimated as the characteristic clinical signs (schooling of fish 

behind aerators, listless swimming, the hemorrhagic and mottling of the gills resembling 

raw hamburger) are easily recognized by experienced aquaculturists and the disease can 

be readily diagnosed pond-side.  As a result, infected fish are often not submitted to 

diagnostic laboratories and many clinical cases go unreported.  However, there is 

evidence that H. ictaluri is present in a majority of catfish ponds during the spring of the 

year, and to a lesser extent in the fall (Wise et al. 2004; Pote et al. 2012). 

The oligochaete host in the H. ictaluri life cycle is the ubiquitous bottom-dwelling 

worm Dero digitata (Styer et al. 1991; Pote et al. 2000).  Common in most catfish 

production ponds, D. digitata is a known host for the aurantiactinomyxon, 

echinactinomyxon, raabeia, and triactinomyxon collective groups of actinospores, 2 of 

which have been linked to a myxospore stage in channel catfish (Bellerud 1993; Lin et al. 

1999; Pote et al. 2000).  Previous surveys of actinospores from catfish aquaculture ponds 

lack molecular data, but those studies demonstrate D. digitata is an important host 

involved in myxozoan life cycles in these closed production systems (Bellerud 1993; 
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Bellerud et al. 1995).    The objective of this research was to morphologically and 

molecularly characterize actinospore types released from D. digitata in an effort to 

molecularly confirm unknown myxozoan life cycles within catfish production systems. 

2.3 Materials and Methods 

2.3.1 Collection of actinospores from D. digitata 

In May of 2011, benthic sediment samples were collected from a commercial 

channel catfish pond located in Sunflower County, Mississippi, with a recently confirmed 

outbreak of proliferative gill disease in the resident catfish population.  Sediment samples 

were dredged from the water/sediment interface of the pond, transported to the laboratory 

in 5 gallon buckets, covered with pond water and left to settle overnight.  Following 

established protocols (Bellerud 1993; Pote et al. 1994), the mud was washed with reverse 

osmosis water and initially screened through a 2 mm aperture brass screen, followed by a 

second wash through a 300 μm aperture brass screen.  The filtrate was then washed into a 

white plastic tray for visualization of oligochaetes.  Dero digitata, identified by their 

characteristic serpentine swimming motion and morphology, were isolated, rinsed 

thoroughly and placed individually into the wells of 96-well plates.  Oligochaetes were 

observed every 24 hr for 1 wk for the release of actinospores (Bellerud 1993; Pote et al. 

1994).  Once actinospore stages were observed, infected D. digitata were placed into 

sterile 1.5 ml microcentrifuge tubes with 1 ml of nuclease free water and allowed to shed 

actinospores for 24 hr.  A 20 μl suspension of actinospores was placed on a microscope 

slide, cover slipped, and viewed using an Olympus BX-50 microscope (Olympus, Center 

Valley, Pennsylvania).  Images of actinospores from infected oligochaetes were captured 

using a Spot Insight QE digital camera and morphological measurements were made 
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using Spot Basic 3.1 image analysis software (Diagnostic Instruments, Sterling Heights, 

Michigan).  Identification and morphological characterization of actinospores was 

followed using the guidelines of Lom et al. (1997). 

2.3.2 Actinospore DNA extraction 

Infected D. digitata were removed from the 1.5 ml microcentrifuge tubes and 

genomic DNA was extracted from the remaining actinospores following the suggested 

protocol of the PowerSoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, 

California).  Genomic DNA was re-suspended in 100 µl of PowerSoil® DNA Isolation 

Kit Solution C6 before being stored at -80ºC. 

2.3.3 Amplification of the 18S SSU rRNA gene 

Initial amplification of the 18S SSU rRNA gene was performed using universal 

eukaryotic primers ERIB1 and ERIB10 and subsequent nested polymerase chain 

reactions (PCR) were carried out using primers designed to amplify the myxozoan 18S 

rRNA gene for each actinospore isolate.  Primers used in the amplification of the 18S 

rRNA gene were the H2 and H9 primers developed by Hanson et al. (2001), MyxospecF 

and MyxospecR primers described by Fiala (2006), and combinations of the Genmyxo3, 

Genmyxo4, and Genmyxo5 primers designed by Griffin et al. (2008).  The 25-μl PCR 

reaction mixtures contained 20 pmol of each primer (Table 2.1) using EconoTaq® Plus 

Green 2X Master Mix (Lucigen, Madison, Wisconsin).  Amplification was carried out 

using an MJ Research PTC-200 thermal cycler (GMI, Ramsey, Minnesota) with a 

denaturation step of 95ºC for 10 min, followed by 35 cycles of 95ºC for 1 min, 48ºC for 1 

min, 72ºC for 2 min, and the final extension step was at 72ºC for 10 min.  For the nested 
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PCR reactions, 1 μl of PCR product from the initial amplification using the ERIB1 and 

ERIB10 primers was used with the primer combinations according to Griffin et al. 

(2008).  In the nested PCR reactions all reaction mixtures remained the same, but the 

annealing temperature was 52ºC.  Amplicons were run through a 1.2% agarose gel 

containing 0.1µg/ml ethidium bromide and visualized under ultraviolet light to ensure the 

presence of a single appropriate sized band, estimated by direct comparison to a 

concurrently run molecular weight marker (Hyperladder II, Bioline, London, U.K.). 

 

Table 2.1 Primers used in 18S rRNA genetic analysis of actinospores 

Primer Sequence (5’-3’) Reference 
ERIB1 ACCTGGTTGATCCTGCCAG Barta et al. (1997) 
ERIB10 CCTCCGCAGGTTCACCTACGG Barta et al. (1997) 
H2 CGACTTTTACTTCCTCGAAATTGC Hanson et al. (2001) 
H9 TTACCTGGTCCGGACATCAA Hanson et al. (2001) 
Myxospec F TTCTGCCCTATCAACTWGTTG Fiala (2006) 
Myxospec R GGTTTCNCDGRGGGMCCAAC Fiala (2006) 
Genmyxo3 
Genmyxo4 

TGATTAAGAGGAGCGGTTGG 
GGATGTTGGTTCCGTATTGG 

Griffin et al. (2008) 
Griffin et al. (2008) 

Genmyxo5 TAAGCGCAGCAACTTTGAGA Griffin et al. (2008) 
 

2.3.4 Sequencing of the 18S rRNA gene 

All PCR products were purified using the QIAquick PCR purification kit 

(QIAGEN, Valencia, California) and primers used for PCR were also used for 

sequencing.  Purified products were sequenced directly or cloned using a plasmid vector 

(pCR®4Blunt-TOPO®; Zero Blunt® TOPO® PCR cloning kit (Invitrogen, Carlsbad, 

California) and sequenced according to the manufacturer’s protocol. Purified PCR 
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products were sequenced in both directions and sequencing reactions were carried out 

using ABI BigDye™ chemistry (Applied Biosystems, Foster City, California), and run on 

an ABI Prism 3730™ automated sequencer (Applied Biosystems).  Contiguous 

sequences were assembled using the corresponding chromatograms and the SeqMan™ 

utility of the Lasergene software package (DNAStar, Madison, Wisconsin) and submitted 

to the NCBI nucleotide database (Accession numbers:  KF263537, KF263538, 

KF263539, KF263540). 

2.3.5 Phylogenetic analysis 

The obtained DNA sequences were compared with similar published myxozoan 

sequences deposited in the National Center for Biotechnology Information non-redundant 

nucleotide database using the blastn suite optimized for highly similar sequences 

(Altschul et al. 1990). For the phylogenetic analysis, the 20 most closely related 

published sequences generated by the blastn search of each actinospore sequences of this 

study were obtained and aligned using the Clustal W application of the MEGA5 

(Molecular Evolutionary Genetics Analysis, 5.0) program (Tamura et al. 2011). 

Tetracapsuloides bryosalmonae was chosen as an outlying organism for the phylogenetic 

analyses. 

Phylogenetic analyses performed on the 18S rRNA sequences of the newly 

sequenced actinospores were conducted using the MEGA5 software (Tamura et al. 2011). 

Maximum parsimony analysis was performed using the close-neighbor-interchange 

search level 3, with the random addition of 100 trees (Nei and Kumar 2000).  The 

bootstrap consensus tree for both analyses was inferred from 1,000 replicates (Felsenstein 

1985). Minimum evolution analysis was performed using a close-neighbor interchange 
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search level 3 with the initial tree obtained by the neighbor-joining algorithm using the 

pairwise deletion option for gaps/missing data (Rzhetsky and Nei 1992; Nei and Kumar 

2000). 

2.4 Results 

A total of 2,592 D. digitata were isolated from sediments collected from the 

bottom mud of a commercial channel catfish pond harboring an outbreak of PGD in the 

resident population.  Actively shedding D. digitata (N=114; 4.4% overall prevalence) 

released 6 morphotypes belonging to 4 collective groups of actinospores (Figure 2.1).  

Two aurantiactinomyxon types, 2 helioactinomyxon types, 1 raabeia type and 1 

triactinomyxon type were observed in this survey. 
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Figure 2.1 Photomicrographs of myxozoan actinospore types from Dero digitata 

(A) Aurantiactinomyxon type actinospore of Henneguya ictaluri.  (B) 
Aurantiactinomyxon type actinospore of Henneguya exilis.  (C) Helioactinomyxon type 1 
actinospore.  (D) Helioactinomyxon type 2 actinospore.  (E) Raabeia type actinospore.  
(F) Triactinomyxon type actinospore.  Scale bars for A-D represent 10 µm in length.  
Scale bars for E-F represents 25 µm in length. 
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2.4.1 Actinospore descriptions 

2.4.1.1 Aurantiactinomyxon type 1 

Spore body spherical to triangular, diameter 20.87 ± 0.60 μm (range, 20.1–22.3 

μm) (Figure 2.1A).  Three polar capsules, spherical at apex of spore body.  Three caudal 

processes, length 27.69 ± 0.71 μm (range, 26.3–28.9 μm) and width 10.02 ± 0.40 μm 

(range, 9.4–10.9 μm).  Measurements were obtained from 25 actinospores. 

2.4.1.1.1 Taxonomic summary 

Host:  Dero digitata Mueller, 1773. 

Locality:  Commercial catfish pond, Sunflower County, Mississippi. 

Prevalence of infection:  Thirty-five of 2,592 worms (1.35%). 

2.4.1.1.1.1 Remarks 

The aurantiactinomyxon types were similar to the aurantiactinomyxon type 

description of Lom and Dyková (2006).  Aurantiactinomyxons are characterized by 3 

stout, leaf-like caudal processes that are sometimes curved downward, a spore body 

spherical in shape, and protruding polar capsules (Lom et al. 1997; Lom and Dyková 

2006).  Partial sequencing of the 18S rRNA gene revealed Aurantiactinomyxon type 1 

was a 100% match to Henneguya ictaluri, the myxozoan that causes proliferative gill 

disease, or “hamburger gill” in channel and hybrid catfish. 

2.4.1.2 Aurantiactinomyxon type 2 

Spore body spherical, diameter 11.74 ± 0.86 μm (range, 10.2–13.3 μm) (Figure 

2.1B).  Three polar capsules, spherical at apex of spore body.  Three caudal processes, 

elongate and extending in downward curve from spore body, length 42.47 ± 2.47 μm  
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(range, 37.6–46.2 μm) and width 6.54 ± 0.88 μm (range, 5.2–8.5 μm).  Measurements 

were obtained from 25 actinospores. 

2.4.1.2.1 Taxonomic summary 

Host:  Dero digitata Mueller, 1773. 

Locality:   Commercial catfish pond, Sunflower County, Mississippi. 

Prevalence of infection:  Sixty-one of 2,592 worms (2.35%). 

2.4.1.2.1.1 Remarks 

Actinospores of aurantiactinomyxon type 2 were morphologically similar to those 

of Henneguya exilis reported by Bellerud (1993), but the average caudal process length of 

the actinospores observed in this study were shorter than previously reported (42.5 versus 

52.0).  However, the range of both descriptions overlapped across all measured features 

(Table 2.2).  The longer caudal processes of H. exilis are uncommon when compared to 

other aurantiactinomyxon type actinospores reported in the literature (El-Mansy et al. 

1998b; Székely et al. 2000; Oumouna et al. 2003; Székely et al. 2003, 2004). 

Table 2.2 Comparison of aurantiactinomyxon type actinospores. 

Species/type Host 

Caudal 
Process 
Length 

Caudal 
Process 
Width 

Caudal 
Process 
Span 

Spore 
Body 
Diameter Reference 

Aurantiactinomyxon 
type 1 or Henneguya 
ictaluri 

Dero 
digitata 

28.4 9.9 NA 21.8 Bellerud et 
al. (1993), 
Pote et al. 
(2000) 

Aurantiactinomyxon 
type 2 or Henneguya 
exilis  

Dero 
digitata 

52.0 
(42.5) 

5.9 
(6.5) 

NA 
(65.5) 

11.8 
(11.7) 

Bellerud 
(1993), Lin 
et al. 
(1999), 
(This study) 

Aurantiactinomyxon 
type 1 

Branchiura 
sowerbyi 

51.3 9.5 103.2 18.8 El-Mansy et 
al. (1998a) 

Aurantiactinomyxon 
type 2 

Limnodrilus 22.6 11.7 52.2 21.1 El-Mansy et 
al. (1998a) 
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Table 2.2 (continued) 

Aurantiactinomyxon 
type 3 

Branchiura 
sowerbyi 

17.2 3.9 39.5 9.9 El-Mansy et 
al. (1998a) 

Aurantiactinomyxon 
type 1 

Tubifex 
tubifex 

17.5 9.9 45.4 18.3 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 2 

Branchiura 
sowerbyi 

65.7 10.5 142.5 22.8 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 3 

Branchiura 
sowerbyi 

70.3 8.0 149.3 22.8 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 4 

Branchiura 
sowerbyi 

55.7 11.2 122 19.4 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 5 

Branchiura 
sowerbyi 

17.2 3.9 39.5 9.9 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 6 

Limnodrilus 
sp. 

24.2 11.2 55.6 19.7 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 7 

Unidentified 24.4 9.5 58.4 18.9 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 8 

Limnodrilus 
sp. 

12.2 9.0 39.8 22.6 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 9 

Branchiura 
sowerbyi 

51.3 9.5 103.2 18.8 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 10 

Branchiura 
sowerbyi 

16.7 8.8 39.5 15.5 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 11 

Unidentified 31.9 3.7 46.5 8.5 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
type 12 

Branchiura 
sowerbyi 

26.5 8.7 59.2 12.1 El-Mansy et 
al. (1998b) 

Aurantiactinomyxon 
of Myxobolus intimus 

Limnodrilus 
hoffmeisteri 

20.1 10.4 43.6 13.8 Hallett et al. 
(2006) 

Aurantiactinomyxon 
type 1 

Unidentified 26.6 10.1 49.9 12 Hallett et al. 
(2006) 

Aurantiactinomyxon 
type 

Lumbriculid 17.4 7.7 NA 9.7 Marcucci et 
al. (2009) 

Aurantiactinomyxon 
type 

Tubificid 25.6 12 NA 13.7 McGeorge 
et al. (1997) 

Aurantiactinomyxon 
type 1 

Tubifex 
ignotus 

21.1 16.1 NA 14.4 Negredo 
and 
Mulcahy 
(2001) 

Aurantiactinomyxon 
type 2 

Limnodrilus 
hoffmeisteri 

31 10.6 NA 14.1 Negredo 
and 
Mulcahy 
(2001) 

Aurantiactinomyxon 
type 3 

Tubifex 
ignotus 

20.8 10.4 NA 9.1 Negredo 
and 
Mulcahy 
(2001) 

Aurantiactinomyxon 
of 
Aurantiactinomyxon 
pavinsis 

Tubifex sp. 12 NA NA 10 Oumouna et 
al. (2003) 

Aurantiactinomyxon 
type 1 

Unidentified 76 NA NA 16 Oumouna et 
al. (2003) 
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Table 2.2 (continued) 

Aurantiactinomyxon 
type 1 

Tubifex 
tubifex 

32 NA NA 14.4 Özer et al. 
(2002) 

Aurantiactinomyxon 
type 2 

Tubifex 
tubifex 

24.7 NA NA 14.9 Özer et al. 
(2002) 

Aurantiactinomyxon 
type 3 

Tubifex 
tubifex 

114.5 NA NA 21.8 Özer et al. 
(2002) 

Aurantiactinomyxon 
type 4 

Tubifex 
tubifex 

28.3 NA NA 11.9 Özer et al. 
(2002) 

Aurantiactinomyxon 
of Thelohanellus 
nikolskii 

Tubifex 
tubifex 

13.4 9.0 40.5 21.1 Székely et 
al. (1998) 

Aurantiactinomyxon 
type 

Branchiura 
sowerbyi 

6.1 5.6 17.1 8.1 Székely et 
al. (2000) 

Aurantiactinomyxon 
type 

Tubfiex 
tubifex 

12.4 12.4 26.8 13.5 Székely et 
al. (2003) 

Aurantiactinomyxon 
type 1 

Branchiura 
sowerbyi 

10.4 15.0 36 19.5 Székely et 
al. (2004) 

Aurantiactinomyxon 
type 2 

Branchiura 
sowerbyi 

10.5 15.2 35.8 19.6 Székely et 
al. (2004) 

Aurantiactinomyxon 
type of Hoferellus 
carassii 

Nais sp. 48.8 11.7 NA 23.5 Trouillier et 
al. (1996) 

Aurantiactinomyxon 
type 

Branchiura 
sowerbyi 

170.8 12.9 NA 19.7 Xi et al. 
(2013) 

Aurantiactinomyxon  Limnodrilus 
hoffmeisteri 

24 13-16 NA 12 Xiao & 
Desser 
(1998c) 

Aurantiactinomyxon 
of Thelohanellus 
hovorkai 

Branchiura 
sowerbyi 

29 9.2 65.2 18.6 Yokyama 
(1997), 
Székely et 
al. (1998) 

 

Partial sequencing of the 18S rRNA gene revealed this type shared 100% identity 

(100% coverage) to Henneguya exilis (AF021881) a gill parasite of channel catfish (Lin 

et al. 1999). 

2.4.1.3 Helioactinomyxon type 1 

Spore body spherical, diameter 10.07 ± 0.39 μm (range, 9.7–10.7 μm).  Three 

polar capsules spherical, at apex of spore (Figure 2.1C).  Caudal processes, 3, joined at 

side of spore body, bi-lobed, narrows at base, length 6.34 ± 0.58 μm (range, 5.6–8.5 μm). 
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Span between caudal processes 11.47±1.33 μm (range, 10.0–13.9 μm).  Measurements 

were obtained from 7 actinospores. 

2.4.1.3.1 Taxonomic summary 

Host:  Dero digitata Mueller, 1773. 

Locality:  Commercial catfish pond, Sunflower County, Mississippi. 

Prevalence of infection:  Two of 2,592 worms (0.08%). 

2.4.1.3.1.1 Remarks 

Bellerud (1993) proposed a novel type of actinospore designated as 

Helioactinomyxon minutus isolated from D. digitata collected from channel catfish 

production ponds.  The helioactinomyxon actinospore bears similarities to the 

aurantiactinomyxon type, but is much smaller than other actinospore types described 

from D. digitata in channel catfish ponds.  The caudal processes extend from the base of 

the spore body and are bifurcated at about half their length as compared to the non-

bifurcated caudal processes exhibited by aurantiactinomyxon types (Bellerud 1993; Lom 

and Dyková 2006).  No other actinospore types described in the literature fit the 

helioactinomyxon type described by Bellerud and the types described in this paper, 

suggesting the inclusion of helioactinomyxon as a new collective group (Janiszewska 

1955, 1957; Bellerud 1993; Lom and Dyková 2006). 

The contiguous sequence of the 18S rRNA gene obtained for the 

helioactinomyxon type 1 actinospore was 2,015 bp in length and was not a complete 

match to any sequence in the NCBI nucleotide database.  The helioactinomyxon type 1 

actinospore shared a 98% identity (100% coverage) with Aurantiactinomyxon 
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mississippiensis (AF021878), an actinospore released by D. digitata, but was not 

observed in this study, 98% identity (100% coverage) with H. ictaluri (AF195510), the 

myxozoan that causes proliferative gill disease in channel and hybrid catfish, 94% 

identity (100% coverage) with H. adiposa (EU492929) which forms epidermal plasmodia 

on the adipose fin of channel catfish (Minchew 1977; Griffin et al. 2009b), 94% identity 

(100% coverage) with H. exilis (AF021881), a gill myxozoan of channel catfish (Lin et 

al. 1999), and 91% identities (98–100% coverage) with Henneguya pellis (FJ468488) and 

Henneguya sutherlandi (EF191200), which form epidermal plasmodia in blue (Ictalurus 

furcatus) and channel catfish, respectively (Griffin et al. 2008, 2009a).  Minimum 

evolution and maximum parsimony analysis were in agreement with the placement of 

helioactinomyxon type 1 within the clade of Henneguya species known to parasitize 

ictalurid fish and was well supported by bootstrap values (100% bootstrap support for 

both maximum parsimony and minimum evolution (Figure 2.2 and Figure 2.3). 
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Figure 2.2 Maximum parsimony analysis of the actinospore 18S SSU rRNA gene 
sequences. 

Maximum parsimony tree of the actinospore 18S SSU rRNA gene sequences and the 30 
most relevant myxozoan sequences (oligochaete host) [fish host] obtained by a blast 
search of the NCBI non-redundant nucleotide (nr/nt) database and rooted at 
Tetracapsuloides bryosalmonae.  Numbers at the nodes represent bootstrap confidence 
values (n=1,000 replicates).  Circles indicate the undescribed myxozoans in this paper. 
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Figure 2.3 Minimum evolution analysis of the actinospore 18S SSU rRNA gene 
sequences. 

Minimum evolution tree of the actinospore 18S SSU rRNA gene sequences and the 30 
most relevant myxozoan sequences (oligochaete host) [fish host] obtained by a blast 
search of the NCBI nonredundant nucleotide (nr/nt) database and rooted at 
Tetracapsuloides bryosalmonae.  Numbers at the nodes represent bootstrap confidence 
values (n=1,000 replicates).  Circles indicate the undescribed myxozoans in this paper. 

2.4.1.4 Helioactinomyxon type 2 

Spore body spherical, diameter 8.93 ± 0.64 μm (range, 7.4–10.0 μm) (Figure 

2.1D).  Polar capsules, 3, pyriform at apex of spore body.  Three caudal processes, broad, 
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bilobed, extending from base of spore body, length 22.43 ± 1.69 μm (range, 19.3–24.7 

μm).  Span between caudal processes 14.34 ± 1.91 μm (range, 10.3–17.7 μm).  

Measurements were obtained from 15 actinospores. 

2.4.1.4.1 Taxonomic summary 

Host:  Dero digitata Mueller, 1773. 

Locality:  Commercial catfish pond, Sunflower County, Mississippi. 

Prevalence of infection:  Eight of 2,592 worms (0.31%). 

2.4.1.4.1.1 Remarks 

The contiguous sequence of the 18S rRNA gene obtained for the 

helioactinomyxon type 2 actinospore was 2,101 bp in length.  The helioactinomyxon type 

2 actinospore had a 91% identity (79% coverage) with Myxobolus neurophilus from the 

brain of yellow perch Perca flavescens from the United States (FJ468489), 94% identity 

(82% coverage) with 3 isolates of Henneguya pseudorhinogobii (AB447994, AB447995, 

AB447996) a gill myxozoan of freshwater goby Rhinogobius sp. from Japan (Kageyama 

et al. 2009), 89% identity (89% coverage) with Henneguya tunisiensis (GQ340975) 

found in the gill-arches of East Atlantic peacock wrasse Symphodus tinca off the 

Kerkennah Islands, Tunisia (Bahri et al. 2010) and Henneguya cynoscioni (JN017203) 

that is associated with lesions in the bulbus arteriosus of spotted seatrout Cynoscion 

nebulosus (Dyková et al. 2011).   Phylogenetic placement of the helioactinomyxon type 2 

actinospore within clade containing Myxobolus neurophilus and Henneguya 

pseudorhinogobii was well supported (100% bootstrap value for both maximum 

parsimony analysis and minimum evolution analysis). 
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2.4.1.5 Raabeia type 

Spore body elongate, cylindrical, length 28.2 ± 3.13 μm (24.1–33.7 μm) and 

width 6.44 ± 0.52 μm (range, 5.7–7.4 μm) (Figure 2.1E).  Three polar capsules, pyriform, 

protruding from apex of spore body.  Caudal processes, 3, joined at base of spore body 

and downward curving before curving upward to tapered ends, length 150.65 ± 19.46 μm 

(range, 117.0–171.2 μm) and width 7.3 ± 0.83 μm (6.1–8.9 μm).  Measurements were 

obtained from 9 actinospores. 

2.4.1.5.1 Taxonomic summary 

Host:  Dero digitata Mueller, 1773. 

Locality:  Commercial catfish pond, Sunflower County, Mississippi. 

Prevalence of infection:  Four of 2,592 worms (0.15%). 

2.4.1.5.1.1 Remarks 

Raabeia type actinospores are described as having an elliptical spore body usually 

containing 3 protruding polar capsules at the apical portion.  Caudal processes are jointed 

at the base of the spore body and are often long, tapered, and curved in an upward 

direction.  Raabeia actinospores are differentiated from triactinomyxon type actinospores 

based on the absence of a style (Janiszewska 1957; Lom and Dyková 2006).   

The raabeia type actinospore observed in this study was not consistent with the 

morphology of the raabeia type (Raabeia noxubeensis) reported by Bellerud (1993) from 

Amphichaeta sp. isolated from channel catfish ponds (Table 2.3).  This raabeia type 

possessed longer caudal processes (150.7 versus 53.9) and the spore body width was 

narrower (6.4 versus 11.8).  The closest morphological match to the raabeia type 
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observed in this study is the raabeia type 4 of Özer et al. (2002) from Tubifex tubifex 

isolated from a salmon farm in Northern Scotland.  They share similar caudal process 

lengths (150.7 and 142.7) and spore body lengths (28.2 and 29.6), but the spore body 

width of the type described in this paper is much narrower (6.44 versus 16.5). The raabeia 

type actinospore belonging to the myxozoan parasite Myxobolus cultus, as reported by Xi 

et al. (2013) from a freshwater pond in China, also has overlapping morphological 

features with the raabeia type of this study, but the caudal process length of M. cultus is 

greatly extended (150.7 versus 250.8). 

Table 2.3 Comparison of raabeia type actinospores. 

Species/type Host 

Caudal 
Process 
Length 

Caudal 
Process 
Width 

Caudal 
Process 
Span 

Spore 
Body 
Length 

Spore 
Body 
Width Reference 

Raabeia type Dero 
digitata 

150.7 7.3 248.5 28.2 6.44 This study 

Raabiea type 
of Raabeia 
noxubeensis 

Amphicheta 
sp. 

53.9 9.1 NA 27.5 11.8 Bellerud 
(1993) 

Raabeia type 
of 
Myxobolus 
lentisuturalis 

Branchiura 
sowerbyi 

196 NA NA 22.1 10.8 Caffara et 
al. (2009) 

Raabeia type 
1 

Limnodrilus 
sp. 

202.8 8.2 NA 14.1 12.4 El-Mansy 
et al. 
(1998a) 

Raabeia type 
2 

Tubifex sp. 209.4 6.6 NA 21.7 7.7 El-Mansy 
et al. 
(1998a) 

Raabeia type 
1 

Branchiura 
sp. and 
Tubifex sp. 

294 9 NA 25.9 11.8 El-Mansy 
et al. 
(1998b) 

Raabeia type 
2 

Branchiura 
sp. 

202.8 8.2 NA 14.1 12.4 El-Mansy 
et al. 
(1998b) 

Raabeia type 
3 

Tubifex sp. 183.6 10.6 NA 28.2 14.1 El-Mansy 
et al. 
(1998b) 

Raabeia type 
4 

Unidentified 209.4 6.6 NA 21.7 7.7 El-Mansy 
et al. 
(1998b) 

Raabeia type 
1 

Unidentified 213.2 11.2 NA 27.2 16.8 Hallett et 
al. (2006) 

Raabeia type 
2 

Unidentified 120.7 7.7 NA 22 14.2 Hallett et 
al. (2006) 

 



www.manaraa.com

 

53 

Table 2.3 (continued) 

Raabeia type Uncinais 
uncinata 

34.6 NA NA 11.2 4.9 Koprivnikar 
and Desser 
(2002) 

Raabeia type Unidentified 219 10 NA 18.2 12.8 McGeorge 
et al. (1997) 

Raabeia type 
1 

Tubfiex sp. 245 NA NA 35 12 Oumouna 
et al. (2003) 

Raabeia type 
2 

Unidentified 80 NA NA 18 15 Oumouna 
et al. (2003) 

Raabeia type 
1 

Unidentified 94.5 10 NA 18.1 15.7 Özer et al. 
(2002) 

Raabeia type 
2 

Lumbriculus 
variegatus 

85.6 NA NA 18.1 16.1 Özer et al. 
(2002) 

Raabeia type 
3 

Tubifex 
tubifex 

228.3 NA NA 33.9 12.8 Özer et al. 
(2002) 

Raabeia type 
4 

Tubifex 
tubifex 

142.7 NA NA 29.6 16.5 Özer et al. 
(2002) 

Raabeia type 
5 

Lumbriculus 
variegatus 

133.3 NA NA 23.7 20.2 Özer et al. 
(2002) 

Raabeia type 
6 

Tubifex 
tubifex 

164.8 NA NA 29.8 17.4 Özer et al. 
(2002) 

Raabeia type 
of 
Myxobolus 
cultus 

Branchiura 
sowerbyi 

250.8 6.7 NA 24.8 8.2 Xi et al. 
(2013) 

Raabeia ‘A’ Limnodrilus 
hoffmeisteri 

145 8-9 NA 16 10 Xiao & 
Desser 
(1998b) 

Raabeia ‘B’ Limnodrilus 
hoffmeisteri 

230 14 NA 25.5 9 Xiao & 
Desser 
(1998b) 

Raabeia ‘C’ Limnodrilus 
hoffmeisteri 

210 10-12 NA 16.5 9 Xiao & 
Desser 
(1998b) 

Raabeia ‘D’ Tubifex 
tubifex 

290 11-13 NA 21.5 9.5 Xiao & 
Desser 
(1998b) 

Raabeia ‘E’ Tubifex 
tubifex 

215 9-11 NA 24 11 Xiao & 
Desser 
(1998b) 

Raabeia ‘F’ Limnodrilus 
hoffmeisteri 

145 6-7 NA 16.5 8.5 Xiao & 
Desser 
(1998b) 

  

The contiguous sequence of the 18S rRNA gene obtained for the raabeia type 

actinospore was 2,081 bp in length and was not a complete match to any sequence in the 

NCBI nucleotide database.  The raabeia type actinospore showed 96% identity (100% 

coverage) with H. ictaluri (AF195510) from the gills of experimentally infected channel 
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catfish (Pote et al. 2000), 95% identity (100% coverage) with A. mississippiensis 

(AF021878), an aurantiactinomyxon type actinospore that was not observed in this study, 

but is a known parasite of D. digitata (Hanson et al. 2001), 96% identity (97% coverage) 

with H. adiposa (EU492929) from the adipose fin of channel catfish, 95% identity (100% 

coverage) with H. exilis (AF021881) a gill myxozoan of channel catfish, and 92% 

identities (97% coverage) with H. pellis (FJ468488) and H. sutherlandi (EF191200), skin 

myxozoans of  blue (Ictalurus furcatus) and channel catfish, respectively.  Minimum 

evolution and maximum parsimony analysis placed the raabeia type actinospore among 

the group of Henneguya species that infect ictalurid fish and was well supported (100% 

bootstrap support for both minimum evolution and maximum parsimony). 

2.4.1.6 Triactinomyxon type 

Spore body elongate, length 19.85 ± 2.32 μm (range, 16.4–22.9 μm) and width 

9.66 ± 0.92 μm (range, 9.6–10.8 μm) (Figure 2.1F).  Three polar capsules protruding 

from apex of spore body.  Style length 84.55 ± 4.38 μm (range, 78.2–88.9 μm) and width 

8.98 ± 0.87 μm (range, 7.6–10.1 μm) with irregular placement of valve cell nuclei.  Three 

caudal processes, 3, (see previous query) curving upward and tapered at ends, length 

201.93 ± 3.96 (range, 196.0–206.7 μm).  Measurements were obtained from 6 

actinospores. 

2.4.1.6.1 Taxonomic summary 

Host:  Dero digitata Mueller, 1773. 

Locality:  Commercial catfish pond, Sunflower County, Mississippi. 

Prevalence of infection:  Four of 2,592 worms (0.15%). 
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2.4.1.6.1.1 Remarks 

Triactinomyxon type actinospores are commonly characterized by an elongated 

spore body that forms the style which splits into 3 slightly upward curving caudal 

processes that taper to sharp tips (Janiszewska 1955, 1957; Lom and Dyková 2006).  

Similar to the type described by Székely et al. (2007), the valve cell nuclei of the style are 

irregularly positioned. 

The triactinomyxon type actinospore observed in this study was morphologically 

distinct across multiple features from the 2 triactinomyxon types from D. digitata 

described by Bellerud (1993) (Table 2.4).  The closest morphological match to the 

triactinomyxon of this study was the triactinomyxon actinospore of Myxobolus 

hungaricus, a gill parasite of common bream Abramis brama (El-Mansy and Molnár 

1997a).  The actinospore of M. hungaricus is released from 2 oligochaetes, Tubifex 

tubifex and Limnodrilus hoffmeisteri.  The triactinomyxon actinospore described in this 

paper has a shorter spore body than the actinospore of M. hungaricus (19.9 versus 38.9). 

Table 2.4 Comparison of triactinomyxon type actinospores 

Species/type Host 

Caudal 
Process 
Length 

Caudal 
Process 
Width 

Spore 
Body 
Length 

Spore 
Body 
Width 

Style 
Length 

Style 
Width Reference 

Triactinomyxon 
type 

Dero digitata 201.93 NA 19.85 9.66 84.55 8.98 This study 

Triactinomyxon 
of 
Triactinomyxon 
brevis 

Dero digitata 127.3 8.6 33 10 NA NA Bellerud 
(1993) 

Triactinomyxon 
of 
Triactinomyxon 
marquesi 

Amphicheta sp. 274.1 14.3 28.9 10.3 126.08 NA Bellerud 
(1993) 

Triactinomyxon 
of 
Triactinomyxon 
funiformes 

Dero digitata 343.3 20.3 49.3 19 66.3 NA Bellerud 
(1993) 

Triactinomyxon 
of Myxobolus 
hungaricus 

Tubifex tubifex 
and Limnodrilus 
hoffmeisteri 

196.7 NA 38.9 9.5 80.8 6 El-Mansy & 
Molnár 
(1997a) 
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Table 2.4 (continued) 

Triactinomyxon 
of Myxobolus 
drjagini 

Tubifex tubifex  126 10 32 10.5 66 10 El-Mansy 
and Molnár 
(1997b) 

Triactinomyxon 
type 1 

Tubifex or 
Limnodrilus 

230 18.8 50.6 12.9 123.6 21.2 El-Mansy et 
al. (1998a) 

Triactinomyxon 
type 2 

Tubifex or 
Limnodrilus 

152.2 17.6 25.4 10.6 117.7 15.3 El-Mansy et 
al. (1998a) 

Triactinomyxon 
type 3 

Tubifex 224.6 17.5 44.7 11.8 87.1 20 El-Mansy et 
al. (1998a) 

Triactinomyxon 
type 4 

Limnodrilus 281.7 20.8 45 12.9 149 23.5 El-Mansy et 
al. (1998a) 

Triactinomyxon 
type 5 

Tubifex or 
Limnodrilus 

249 16.1 37.7 13.5 90.6 12.9 El-Mansy et 
al. (1998a) 

Triactinomyxon 
type 1 

Stylaria sp. and 
Tubifex sp. 

128 10.6 36.6 10.6 102 16.5 El-Mansy et 
al. (1998b) 

Triactinomyxon 
type 2 

Unidentified NA NA 101.2 14.1 ND ND El-Mansy et 
al. (1998b) 

Triactinomyxon 
type 3 

Nais sp. and 
Tubifex sp. 

127.5 14.5 47.1 10.6 150 10.6 El-Mansy et 
al. (1998b) 

Triactinomyxon 
type 4 

Limnodrilus sp. 173.4 14.3 41.2 8.8 137.7 20.0 El-Mansy et 
al. (1998b) 

Triactinomxyon Tubifex tubifex 2 
longer:  
193.1 
1 
shorter: 
115.4 

2 
longer:  
12.7 
1 
shorter:  
12.7 

25.6 10 112 19.2 Hallett et al.  
(2004) 

Triactinomyxon 
of Henneguya 
nuesslini 

Tubifex tubifex 227.5 12.9 34.6 11.1 138.4 17.24 Kallert et al.  
(2005) 

Triactinomyxon 
type 1 

Tubificid 96 NA 24 13 41 10 Lowers & 
Bartholomew 
(2003) 

Triactinomyxon 
type 2 

Tubificid 188 NA 29 13 162 16 Lowers & 
Bartholomew 
(2003) 

Triactinomyxon 
type 3 

Tubificid 270 NA 36 12 192 16 Lowers & 
Bartholomew 
(2003) 

Triactinomyxon 
type 4 

Tubificid 221 NA 56 9 103 15 Lowers & 
Bartholomew 
(2003) 

Triactinomyxon 
type 5 

Tubificid 123 NA 19 8 94 11 Lowers & 
Bartholomew 
(2003) 

Triactinomyxon 
type 6 

Tubificid 183 NA 29 15 92 14 Lowers & 
Bartholomew 
(2003) 

Triactinomyxon 
type 7 

Tubificid 200 NA 35 13 129 16 Lowers & 
Bartholomew 
(2003) 

Triactinomyxon 
type 

Unidentified 129 NA 52 12.4 130 25 McGeorge et 
al. (1997) 

Triactinomyxon 
type 1 

Tubifex sp. 160 NA NA NA 170 NA Oumouna et 
al. (2003) 

Triactinomyxon 
type 2 

Tubifex sp. 75 NA NA NA 67 NA Oumouna et 
al. (2003) 
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Table 2.4 (continued) 

Triactinomyxon 
type 3 

Unidentified 175 NA NA NA 80 NA Oumouna et 
al. (2003) 

Triactinomyxon 
type 4 

Tubifex sp. 202 NA NA NA 155 NA Oumouna et 
al. (2003) 

Triactinomyxon 
type 

Tubificid 161.1 NA 47.6 15.2 136.5 NA Özer et al. 
(2002) 

Triactinomyxon 
of Myxobolus 
pseudodispar 

Tubifex tubifex 2 
longer:  
196.6 
1 
shorter:  
127.2 

13.6 50.4 15.8 157.3 15.8 Székely et al. 
(1999) 

Triactinomyxon 
type 1 

Rhyacodrilus 
komarovi 

178 10 35 12.5 125 NA Székely et al. 
(2002) 

Triactinomyxon 
type 2 

Rhyacodrilus 
komarovi 

187 13.8 62 9.1 125 NA Székely et al. 
(2002) 

Triactinomyxon 
Syrian type 

Psammoryctides 
albicola 

120 NA 30 NA 130 NA Székely et al. 
(2007) 

Triactinomyxon 
‘A’ 

Limnodrilus 
hoffmeisteri 

370 21 55 11-13 NA NA Xiao & 
Desser 
(1998b) 

Triactinomyxon 
‘B’ 

Limnodrilus 
hoffmeisteri 

205 20 23 18 NA NA Xiao & 
Desser 
(1998b) 

Triactinomyxon 
‘C’ 

Limnodrilus 
hoffmeisteri 

290 25 18 10-13 NA NA Xiao & 
Desser 
(1998b) 

Triactinomyxon 
‘D’ 

Limnodrilus 
hoffmeisteri 

110 NA NA NA NA NA Xiao & 
Desser 
(1998b) 

Triactinomyxon 
‘E’ 

Limnodrilus 
hoffmeisteri and 
Tubifex tubifex 

285 32 50 16 NA NA Xiao & 
Desser 
(1998b) 

Triactinomyxon 
‘F’ 

Limnodrilus 
hoffmeisteri  
and 
Rhyacodrilus 
coccineus 

180 10-11 50 6.4 NA NA Xiao & 
Desser 
(1998b) 

Triactinomyxon 
dubium 

Tubifex tubifex 260 27 31 19 NA NA Xiao & 
Desser 
(1998b) 

Triactinomyxon 
ignotum 

Tubifex sp. 110 11 22 14 NA NA Xiao & 
Desser 
(1998b) 

 

The contiguous sequence of the 18S rRNA gene obtained for the triactinomyxon 

type actinospore was 2,073 bp in length and was not a complete match to any sequence in 

NCBI nucleotide database.  The triactinomyxon type actinospore shared greater than 97% 

identity (60—92% coverage) with 4 isolates of Myxobilatus gasterostei (EU861209, 
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EU861210, AY495703, AJ582063) found in the urinary system of three-spined 

sticklebacks Gasterosteus aculeatus (Atkinson and Bartholomew 2009) and 95% identity 

(82% coverage) with 5 isolates of Ortholinea orientalis (HM770873, HM770872, 

HM770871, HM770875, HM770874) in the ureters of herring Clupea harengus and sprat 

Sprattus sprattus (Karlsbakk and Køie 2011).  The phylogenetic placement of the 

triactinomyxon type actinospore was within the clade containing the renal myxozoan 

parasites Myxobilatus gasterostei and Ortholinea orientlis (97% bootstrap support for 

maximum parsimony; 100% bootstrap support for minimum evolution). 

2.5 Discussion 

This current study demonstrated D. digitata to be host to at least 6 genetically 

distinct myxozoan parasites, consisting of the following collective groups:  

aurantiactinomyxon, helioactinomyxon, raabeia, and triactinomyxon.  Two of the 

actinospores observed in this study, aurantiactinomyxon type 1 and aurantiactinomyxon 

type 2, have corresponding myxospore stages that have been described from channel 

catfish I. punctatus (H. ictaluri and H. exilis, respectively).  The 4 remaining actinospore 

types observed here have not been linked with any corresponding myxospore stage in a 

fish.  As such, little is known of their pathology in the fish host or impacts on production.   

The actinospore prevalence in oligochaetes sampled from intensively managed 

aquaculture systems appears to be higher than in natural waters, which can be expected.  

In catfish production systems, there is a close association of the oligochaete and fish 

hosts.  In addition, catfish production ponds are often managed as multi-batch systems, 

are rarely clean harvested between production cycles, and often harbor contaminating 

wild fish species.  As a result, holdover fish from the previous production cycle can serve 
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as a reservoir of infection for the oligochaete populations in these earthen ponds.  This, 

along with the close proximity in which the fish and oligochaete hosts are held in these 

closed systems, provides an optimal environment for the propagation of myxozoan life 

cycles (Wise et al. 2004; Pote et al. 2012).  In this current study, collected D. digitata 

were only observed for a 1 wk period.  It is likely that several oligochaetes that were 

found negative were actually infected, but not yet releasing actinospores. In addition, 

oligochaetes were only sampled over a 1 mo period.  It is likely other actinospore stages 

may be observed if sampling continued over the course of an entire year, although 

previous research has found the presence of actively shedding oligochaetes in catfish 

ponds to be highest in the spring (Bellerud 1993; Bellerud et al. 1995). 

The overall infection prevalence of D. digitata actively releasing actinospores 

over the 1 wk observational period was 4.4%.  This was in accordance with values 

observed in other surveys of actinosporean-infected oligochaetes.  In a previous account 

of the D. digitata populations of 8 channel catfish farms in Mississippi, the prevalence of 

actinospore releasing D. digitata varied between 0.6–21.7% (Bellerud 1993).  

Comparatively, prevalence rates of the actinospore types from oligochaetes isolated from 

an inflow brook of a salmon hatchery system in Japan varied among the different types of 

actinospores released and were between 0.7–7% (Székely et al. 2002).  Other farm-based 

surveys report prevalence rates of less than 1%, but these rates may be underestimated in 

studies where oligochaetes are collected at a single time point, rather than year round or 

seasonally (McGeorge et al. 1997; Oumouna et al. 2003; Eszterbauer et al. 2006).  In 

surveys of oligochaetes from natural aquatic systems the prevalence levels are often low 

(<1%) (Xiao and Desser 1998b).  Conversely, El-Mansy et al. (1998a) reported an 
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infection prevalence of greater than 30% for a triactinomyxon from Tubifex tubifex and 

attributed their higher prevalence as a result of the extended length of time the same 

population of oligochaetes were sampled.   

Historically, actinospore surveys have focused on morphology and host species, 

but descriptions including 18S rRNA gene sequences allow a more rapid identification of 

the corresponding myxospores stage (Székely et al. 2005; Marcucci et al. 2009).  

Approximately 200 different types of actinospores have been reported in the literature 

worldwide, but many surveys report only morphological characteristics and most are 

deficient in molecular data and phylogenetic inferences that would provide a more 

reliable identification (Janiszewska 1955, 1957; Bellerud 1993; McGeorge et al. 1997; 

El-Mansy et al. 1998a, 1998b; Xiao and Desser 1998a, 1998b, 1998c; Hallett et al. 1999; 

Negredo and Mulcahy 2001; Oumouna et al. 2003; Székely et al. 2004; Lom and Dyková 

2006; Atkinson and Bartholomew 2009; Marcucci et al. 2009).  As a result, numerous 

researchers have suggested morphological descriptions of actinospore or myxospore 

isolates now be accompanied by 18S rRNA gene sequence data, especially in situations 

where actinospores or myxospores of a single type have overlapping or similar 

morphological features.  Hallett et al. (2002) first reported 2 aurantiactinomyxon type 

actinospores that were genetically identical, but differed phenotypically in spore shape 

and process length.  Additionally, others have reported similar findings of a single 

actinospore or myxospore genotype having multiple phenotypes, suggesting 

morphological characterization alone could result in taxonomic redundancy and any new 

description or redescription of either actinospore or myxospore stage should include 18S 
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rRNA sequences (Hallett et al. 2004; Eszterbauer et al. 2006; Atkinson and Bartholomew 

2009; Urawa et al. 2011). 

The now common use of DNA sequencing of the 18S rRNA gene in identifying 

actinospore and myxospore types has not only provided a more precise means of 

identification, but also allows researchers to compare and infer relationships between and 

among this diverse group of organisms (Hallett et al. 2002, 2004; Holzer et al. 2004; 

Eszterbauer et al. 2006; Fiala 2006; Karlsbakk and Køie 2011; Urawa et al. 2011).  

Additionally, elucidation of numerous myxozoan life cycles has been greatly aided by the 

comparison of 18S rRNA gene sequences of the actinospore and myxospore stage in their 

respective host (Lin et al. 1999; Pote et al. 2000; Fiala 2006).  Four of the 18S rRNA 

sequences generated in this study were novel sequences and have been submitted to 

NCBI nucleotide database in hopes that identification of their corresponding myxospore 

stages may be identified through 18S rRNA sequence comparisons. 

In a detailed phylogenetic study of novel Myxobolus and Henneguya 

myxosporeans, Carriero et al. (2013) demonstrated the evolutionary placement of 

myxozoans was largely based on fish host.  The phylogenetic placement of both the 

helioactinomyxon type 1 and raabeia type actinospores within the group of Henneguya 

known to infect ictalurid fish in North America suggests these 2 actinospore types likely 

infect an ictalurid host, although this has yet to be experimentally confirmed (Fig 1 and 

Fig 2).  To date no myxospore stage in an ictalurid fish has been molecularly linked to the 

helioactinomyxon type 1 or raabeia type actinospore described in this paper.  

Interestingly, both helioactinomyxon type 2 and triactinomyxon type actinospores 

are placed outside the group of myxozoans that infect ictalurid fish.  Triactinomyxon type 
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actinospore grouped well within the group of myxozoans that make up the urinary 

bladder clade described by Fiala (2006).  The urinary bladder clade is a relatively small 

group within the larger freshwater Myxobolus clade.  The closest genetic match to the 

triactinomyxon type actinospore was Myxobilatus gasterostei, which parasitizes the 

urinary system of the three-spined sticklebacks Gasterosteus aculeatus and has been 

experimentally demonstrated to have a triactinomyxon actinospore involved in its life 

cycle (Atkinson and Bartholomew 2009).  As the corresponding myxospore stage 

associated with the triactinomyxon type actinospore is unknown, it is unclear if this 

organism parasitizes the urinary system of its corresponding vertebrate host.  

Phylogenetic grouping of myxozoans by site of infection has also been documented 

(Andree et al. 1999; Eszterbauer 2004; Holzer et al. 2004; Fiala 2006).  In the description 

of Ortholinea orientalis, a myxozoan that parasitizes the ureters of Clupea harengus and 

Sprattus sprattus from Denmark, Karlsbakk and Køie (2011) observed the grouping of O. 

orientalis among the myxozoans that constitute the urinary bladder clade.   

Both maximum parsimony analysis and minimum evolution analysis placed the 

helioactinomyxon type 2 actinospore with Myxobolus neurophilus found in the brain of 

the yellow perch Perca flavescens (Khoo et al. 2010).  At this time the helioactinomyxon 

type 2 actinospore has not yet been linked to any myxospore stage in a fish host. 

The helioactinomyxon type actinospores described in this survey match no 

descriptions of any previously identified actinospore types (Lom et al. 1997; Lom and 

Dyková 2006).  Bellerud (1993) first described Helioactinomyxon minutus as an 

actinospore released from D. digitata collected from commercial channel catfish ponds in 

Mississippi.  The actinospores of both the helioactinomyxon type 1 (H. minutus) and 
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helioactinomyxon type 2 in this study both resemble aurantiactinomyxon types, but are 

considerably smaller and possess bilobed caudal processes, a feature that has not been 

reported among the described actinospore types (Janiszewska 1955, 1957; Lom et al. 

1997; Lom and Dyková 2006).  Hexactinomyxon type actinospores, as described by 

Hallett et al. (2003) bare similar bifurcations, but these are actually 6 caudal processes 

that arise from the division of the 3 valve cells that form the style, which is lacking in the 

helioactinomyxon types described here and by Bellerud (1993).  Based on these findings, 

we propose the adoption of helioactinomyxon as a novel actinospore morphotype.   

It is important to consider other fish species that are found in commercial channel 

catfish ponds as a potential intermediate host in the life cycle of these myxozoans.  

Although given the close association with these parasites and the target production 

species, several other fish species are often present in catfish production and are just as 

likely to serve as a fish host in these life cycles as the cultured ictalurids.  A wide array of 

fish species are often associated with catfish production, including, but not limited to, 

mosquitofish (Gambusia affinis), grass carp (Ctenopharyngodon idella), silver carp 

(Hypothalmichthys molotrix), bighead carp (Aristichthys nobilis), bigmouth buffalo 

(Ictiobus cyprinellus), smallmouth buffalo (Ictiobus bubalus), threadfin shad (Dorosoma 

petenense), and fathead minnows (Pimephales promelas) (Tucker et al. 2004; Mischke et 

al. 2012, 2013).  It is possible several of the actinospore stages identified in this study do 

not cycle through channel or hybrid catfish, but utilize one of the many incidental species 

present in catfish ponds, which are considerably understudied.  Future research will focus 

on these alternative fish species, as well as other vertebrate species that may play a role in 

the propagation of myxozoan life cycles in catfish aquaculture.   
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This survey is the first account of actinospores from D. digitata collected from a 

channel catfish aquaculture system using both morphology and sequencing of the 18S 

rRNA gene.  Other than H. ictaluri, the impact these actinospore types may have on 

catfish production remain unclear.  Investigations of other resident fish populations 

routinely found in catfish ponds are necessary to determine if any unidentified myxospore 

stages could be associated with the actinospores reported in this survey and the potential 

impact this could have on catfish health and production. 
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CHAPTER III 

18S rRNA GENE SEQUENCING IDENTIFIES A NOVEL SPECIES OF HENNEGUYA 

PARASITIZING THE GILLS OF THE CHANNEL CATFISH (ICTALURIDAE) 

3.1 Abstract 

In the southeastern United States, the channel catfish Ictalurus punctatus is a host 

to at least eight different species of myxozoan parasites belonging to the genus 

Henneguya, four of which have been characterized molecularly by small subunit 

ribosomal RNA gene (SSU rRNA) sequencing.  However, only two of these have 

molecularly confirmed life cycles that involve the oligochaete Dero digitata as the 

definitive host.  During a health screening of farm-raised channel catfish, several fish 

presented with deformed primary lamellae.  Lamellae harbored large, nodular, white 

pseudocysts 1.25 mm in diameter and upon rupturing, these pseudocysts released 

Henneguya myxospores, with a typical lanceolate shaped spore body, measuring 17.1 ± 

1.0 μm (mean ± SD; range = 15.0-19.3 μm) in length and 4.8 ± 0.4 μm (3.7-5.6 μm) in 

width.  Pyriform shaped polar capsules were 5.8 ± 0.3 μm in length (5.1-6.4 μm) and 1.7 

± 0.1 μm (1.4-1.9 μm) in width.  The two caudal processes were 40.0 ± 5.1 μm in length 

(29.5-50.0 μm) with a spore length of 57.2 ± 4.7 (46.8-66.8 μm).  The contiguous SSU 

rRNA gene sequence obtained from myxospores of five excised cysts did not match any 

Henneguya sp. in Genbank.  The greatest sequence homology (91% over 1900 bp) was 

with Henneguya pellis, associated with blister-like lesions on the skin of blue catfish 
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Ictalurus furcatus.  Based on the unique combination of pseudocyst and myxospore 

morphology, tissue location, host and SSU rRNA gene sequence data, we report this 

isolate to be a previously unreported species, Henneguya bulbosus sp. nov. 

3.2 Introduction 

The genus Henneguya Thélohan, 1892, contains approximately 200 species of 

freshwater and marine parasites of fish, described primarily by host records and 

morphological descriptions of the myxospore stage in the fish host.  However, with the 

advent of molecular sequencing more precise identification and descriptions of novel 

species can be made, supplementing morphological descriptions, tissue predilection and 

host records with molecular characterization of the 18S rRNA gene (Lom and Dyková 

2006; Eiras and Adriano 2012).     

In the southeastern United States, with its closed earthen ponds, intensive 

management strategies, and multibatch production systems (Wise et al. 2004), catfish 

aquaculture provides an optimal environment for the maintenance and propagation of 

myxozoan life cycles.  Henneguya ictaluri, the myxozoan parasite responsible for 

proliferative gill disease in channel and hybrid catfish, has been persistent in catfish 

aquaculture since the early 1980s (Bowser and Conroy 1985; Pote et al. 2000; Bosworth 

et al. 2003; Wise et al. 2004; Griffin et al. 2010).  In addition to H. ictaluri, eight other 

species of Henneguya are described from the channel catfish (Minchew 1977; Eiras and 

Adriano et al. 2002; 2012) but most are often incidental findings on routine diagnostic 

screenings.  Of these eight species, four have been molecularly characterized by 

sequencing of the 18S rRNA gene (Lin et al. 1999; Pote et al. 2000; Griffin et al. 2008; 

Griffin et al. 2009a; Griffin et al. 2009b).  In this paper, we present detailed 
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morphological, histological and molecular sequencing data describing a previously 

unidentified species of Henneguya from the gills of farm-raised channel catfish. 

3.3 Materials and methods 

Four fingerling and one stocker channel catfish from a local commercial 

aquaculture operation were submitted for routine diagnostic screening to the Aquatic 

Research & Diagnostic Laboratory at the Thad Cochran National Warmwater 

Aquaculture Center, Stoneville, MS.  Four of the fish displayed several nodular 

myxosporean pseudocysts (~1 mm in diameter) that presented as a bulbous protrusion of 

the primary lamellae.  Numerous lanceolate Henneguya myxospores were released when 

the pseudocysts were mechanically ruptured.  Gill tissue containing pseudocysts was 

pooled and preserved in 70% ethanol for future morphological and molecular 

characterization. 

Pseudocysts (n=7) were individually excised from gill tissue by sharp dissection 

and placed onto a clean glass microscope slide with a drop of physiological saline.  A 

glass coverslip was placed over each excised pseudocyst, which was photographed prior 

to mechanical rupture to release the myxospores.  Tissues and myxospores were viewed 

with a BX-50 Olympus microscope (Olympus Optical Co Ltd, Tokyo, Japan) and 

representative images captured with an Olympus DP72 camera and DP-2-Twain/cellSens 

software (Olympus Optical Co Ltd, Tokyo, Japan).   

A single primary lamella containing a pseudocyst was excised from the gill arch 

of one fish.  The tissue was trimmed, processed, and embedded in paraffin wax, and 

sectioned at 5 µm.  Slides were originally stained with hematoxylin and eosin (H & E).  

However, due to the limited amount of tissue left in the paraffin block and the need to 
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better demonstrate the presence and morphology of myxospores, Giemsa stain was then 

applied to the H & E stained slides. 

Myxospores from each excised pseudocyst were collected into individual 1.5 ml 

microcentrifuge tubes and centrifuged at 15,000 x g for 10 min.  The supernatant was 

removed and myxospores were washed with 1 mL of nuclease free water before repeating 

the centrifugation step as previously described.  After removal of the supernatant, 

genomic DNA was extracted from myxospores using the QIAGEN DNeasy Tissue Kit 

(QIAGEN Inc., Valencia, California) according to manufacturer protocol.  Primers (Table 

3.1) designed to amplify the 18S rRNA gene of myxozoans were used in the molecular 

characterization of the myxospores (Barta et al. 1997; Hanson et al. 2001; Fiala 2006; 

Griffin et al. 2008).  The first amplification was performed using the general eukaryotic 

primers ERIB1 and ERIB10 (Barta et al 1997) and the remaining primers were used in 

nested PCR reactions according to Griffin et al. (2008).   All 25 µl reaction mixtures 

contained 20 pmol of each primer using EconoTaq® Plus Green 2X Master Mix 

(Lucigen, Madison, Wisconsin).  The initial amplification was 95°C for 10 min, followed 

by 35 cycles of 95°C for 1 min, 48°C for 1 min, 72°C for 2 min, and a final extension 

step of 72°C for 10 min.  The nested PCR reactions were carried out using 1 µl of PCR 

product from the initial amplification by the ERIB1 and ERIB10 primer set.  The cycling 

parameters were the same, but the annealing temperature was 52°C.    Amplification of 

the 18S rRNA gene was carried out using an MJ Research PTC-200 thermal cycler (GMI, 

Ramsey, Minnesota).   A 1.2% agarose gel stained with ethidium bromide (0.1 μg/ml) 

was used to visualize amplicons after exposure to ultraviolet light.  All products were 
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compared to an appropriate molecular weight marker (Hyperladder II, Bioline, London, 

United Kingdom) to confirm the amplification of an appropriately sized product. 

Table 3.1 Primers used in the 18S rRNA genetic characterization of H. bulbosus n. 
sp. 

 

Amplicons were purified using the QIAquick PCR purification kit (QIAGEN, 

Valencia, California) and the primers used in amplification of the 18S rRNA gene were 

also used for sequencing.  Prior to sequencing, purified products were quantified using a 

NanoDrop spectrophotometer (NanoDrop Technologies, Inc., Wilmington, Delaware).  

Products were sequenced directly in both directions using ABI BigDye™ chemistry 

(Applied Biosystems, Foster City, California), and run on an ABI Prism 3730™ 

automated sequencer (Applied Biosystems).  All contiguous sequences were assembled 

using the SeqMan™ program of the Lasergene software package (DNAStar, Madison, 

Wisconsin).  The consensus sequence generated was used in further phylogenetic analysis 

and submitted to GenBank (Accession number: KM000055). 

The myxozoan sequences presented in Table 3.2 were downloaded from the 

National Center for Biotechnology Information’s Genbank 

(http://www.ncbi.nlm.nih.gov/genbank/) and used in the creation of phylogenetic trees: 

Primer Sequence (5’-3’) Reference 
ERIB1 ACCTGGTTGATCCTGCCAG Barta et al. (1997) 
ERIB10 CCTCCGCAGGTTCACCTACGG Barta et al. (1997) 
H2 CGACTTTTACTTCCTCGAAATTGC Hanson et al. (2001) 
H9 TTACCTGGTCCGGACATCAA Hanson et al. (2001) 
Myxospec F TTCTGCCCTATCAACTWGTTG Fiala (2006) 
Myxospec R GGTTTCNCDGRGGGMCCAAC Fiala (2006) 
Genmyxo3 
Genmyxo4 

TGATTAAGAGGAGCGGTTGG 
GGATGTTGGTTCCGTATTGG 

Griffin et al. (2008) 
Griffin et al. (2008) 

Genmyxo5 TAAGCGCAGCAACTTTGAGA Griffin et al. (2008) 

http://www.ncbi.nlm.nih.gov/genbank/


www.manaraa.com

 

78 

Table 3.2 Myxozoan sequences used in phylogenetic analyses 

Species Accession # 
Henneguya adiposa EU492929 
Henneguya akule EU016076 
Henneguya corruscans JQ654971 
Henneguya cynoscioni JN017203 
Henneguya doori U37549 
Henneguya exilis AF021881 
Henneguya gurlei DQ673465 
Henneguya ictaluri AF195510 
Henneguya lateolabracis AB183747 
Henneguya lesteri AF306794 
Henneguya mauritaniensis JQ687060 
Henneguya ogawai AB693051 
Henneguya pellis FJ468488 
Henneguya pseudorhinogobii AB447995 
Henneguya rhinogobii AB447992 
Henneguya sutherlandi EF191200 
Henneguya yokoyamai AB693053 
Myxobolus bibullatus AF378336 
Myxobolus cerebralis EF370481 
Myxobolus episquamalis AY129312 
Myxobolus exiguus AY129317 
Myxobolus hakyi FJ816269 
Myxobolus ichkeulensis AF378337 
Myxobolus inornatus JN896706 
Myxobolus koi FJ841887 
Myxobolus lentisuturalis AY278563 
Myxobolus machidai AB693054 
Myxobolus oliveirai HM754633 
Myxobolus osburni AF378338 
Myxobolus pangasii FJ816270 
Tetracapsuloides bryosalmonae FJ981823 

  

Further molecular and phylogenetic analyses of the 18S rRNA gene obtained 

from the myxospores were conducted using the Molecular Evolutionary Genetic Analysis 

5.0 (MEGA5) software (Tamura et al. 2011).  Maximum parsimony and minimum 

evolutionary analyses were performed using the close-neighbor interchange search level 
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3.  Both bootstrap consensus trees were inferred from 1000 replicates.  For minimum 

evolution analysis, the initial tree was obtained by the neighbor-joining algorithm using 

the pairwise deletion option for gaps/missing data (Rzhetsky and Nei 1992; Nei and 

Kumar 2000). 

3.4 Results 

3.4.1 Gross morphology and histology 

Pseudocysts presented as grossly visible (~1.25 mm diameter) white nodules in 

the primary lamellae (Figure 3.1).  Mechanical rupturing of the pseudocysts on wet 

mount observation revealed numerous Henneguya myxospores. 
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Figure 3.1 Light microscopic image of a Henneguya bulbosus n. sp. pseudocyst on gill 
wet mount. 

Pseudocyst previously fixed in 70% ethanol. 

Within the expanded branchial tissue was a large (~ 620 X 350 μm) , well 

circumscribed oval, non-epithelial lined cyst-like structure containing granular 

eosinophilic material that fractured during processing and blue staining central portion 

consisting of  asynchronous maturing myxospores (Figures 3.2 and 3.3).  The more 

mature spores were located towards the center of the structure (Figure 3.4).   The 

displaced epithelial tissue immediately surrounding the pseudocyst had a loose infiltrate 

of mononuclear inflammatory cells (mainly lymphocytes) and the outermost portion of 
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the tissue covered by an almost contiguous layer of mucous cells especially along one 

leading edge (Figure 3.3). 

 

Figure 3.2 Low magnification view of the affected secondary lamella with the 
pseudocyst. 

H & E and Giemsa stained. 
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Figure 3.3 Higher magnification view of the pseudocyst of H. bulbosus n. sp.  

Note the blue staining mucus cells on the edge, the mononuclear inflammatory infiltrate 
and the granular central core consisting of asynchronously maturing myxospores. H & E 
and Giemsa stain. 
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Figure 3.4 Higher magnification to illustrate the asynchronous maturation and 
morphology of myxospores of H. bulbosus n. sp. 

H & E and Giemsa stain. 

3.4.2 Myxospore morphology 

Myxospores (Figures 3.5 and 3.6) were consistent with the description of the 

genus Henneguya and were characterized by a lanceolate shaped spore body 17.1 ± 0.1 

μm (mean ± SD; range = 15.0-19.3 μm) in length and 4.8 ± 0.4 μm (3.7-5.6 μm) in width.  

Pyriform shaped polar capsules were 5.8 ± 0.3 μm in length (5.1-6.4 μm) and 1.7 ± 0.1 

μm (1.4-1.9 μm) in width.  The two caudal processes were 40.0 ± 5.1 μm in length (29.5 -

50.0 μm) with a total spore length of 57.2 ± 4.7 (46.8-66.8 μm).  Measurements obtained 

from 25 myxospores. 
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Figure 3.5 Wet mount of a representative mature myxospore of H. bulbosus n. sp. 
released from the mechanically ruptured pseudocyst. 
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Figure 3.6 Line drawing of a representative myxospore of H. bulbosus n. sp. 

Scale bar is 10 µm. 

Morphologically the myxospores had similar features that overlapped with 

numerous Henneguya species described from ictalurid fish in North America, but were 

not an exact match to any previously described species from ictalurid fish (Table 3.3).  

While morphology and host species can be useful tools in the identification of myxozoan 

species, they alone should not be relied upon as criteria to describe novel species.  

Descriptive morphological reports supplemented with 18S rRNA gene sequence data is 

currently the most widely accepted means for describing novel myxozoan species (Fiala 

2006). 
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3.4.3 Molecular analyses 

The 2073 bp 18S rRNA gene sequence did not completely match any sequences 

deposited in NCBI nr/nt database after performing a BLASTn search for somewhat 

similar sequences and has been deposited in GenBank (Accession number KM000055).  

Comparison to the most homologous sequences revealed that the myxospores were most 

similar to Henneguya pellis (97.1% sequence homology) and Henneguya sutherlandi 

(95.7% sequence homology) both of which form epidermal pseudocysts in blue and 

channel catfish, respectively (Minchew 1977; Griffin et al. 2008; Griffin et al. 2009a).  

Although the myxospores in this paper share overlapping morphological characteristics 

and significant sequence homology (>90%) to Henneguya spp. parasitizing North 

American ictalurid fish, the discrete pseudocyst morphology and location, coupled with 

distinct morphological features suggest this to be an undescribed species of Henneguya. 

3.4.4 Taxonomic summary 

Species:  Henneguya bulbosus n. sp. (Myxozoa:  Myxosporea) 

Type host:  Ictalurus punctatus (Rafinesque, 1818) (Siluriformes, Ictaluridae) 

Site of infection:  Gills (Intralamellar type) 

Type locality:  Commercial catfish pond, Washington County, Mississippi, USA 

Materials deposited:  Holotype USNM 1251670, Smithsonian Institution, 

National Museum of Natural History, Washington DC, United States of America 

3.5 Discussion 

Henneguya bulbosus n. sp. myxospore shares overlapping morphological 

characteristics with those of the eight species of Henneguya identified from the channel 
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catfish (Table 3.3).  These similar morphological characteristics make proper 

identification by routine microscopy difficult and emphasize the importance of noting 

other identifiers such as pseudocyst morphology and location, host species, geographic 

location, associated pathology, and molecular analysis of at least the 18S rRNA gene. 

Phylogenetic analysis of the 18S rRNA gene of H. bulbosus n. sp. supports its 

placement among the Henneguya species infecting North American ictalurids (Figures 

3.6 and 3.7).  The ictalurid infecting Henneguya species, based on 18S rRNA gene 

analysis (sharing >90% sequence homology), are genetically similar and appear to group 

based on spore morphology, host family (Ictaluridae) and to a lesser extent tissue site.  H. 

bulbosus n. sp., a myxozoan parasite of the gills of the channel catfish, groups most 

closely with the epidermal pseudocyst forming species H. pellis and H. sutherlandi from 

the blue catfish and channel catfish, respectively (Griffin et al. 2008, Griffin et al. 2009a).  

The pseudocysts of H. bulbosus n. sp. form grossly visible spherical 1 mm pseudocysts 

similar in size to those of H. pellis and H. sutherlandi, but differ in tissue location. 
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Figure 3.7 Minimum evolution analysis of H. bulbosus 18S SSU rRNA gene 
sequence. 

Fish hosts are indicated in parentheses.  Numbers at each node represent bootstrap 
confidence values (n=1,000 replicates).  Diamond indicates the novel species H. 
bulbosus. 
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Figure 3.8 Maximum parsimony analysis of H. bulbosus 18S SSU rRNA gene 
sequence. 

Fish hosts are indicated in parentheses.  Numbers at each node represent bootstrap 
confidence values (n=1,000 replicates).  Diamond indicates the novel species H. 
bulbosus. 

In the past, spore morphology and site of infection were heavily relied upon to 

determine myxosporean species among closely related fish (Lom and Arthur 1989).  The 
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validity of the host record of the gill parasite Myxobolus rotundus of the common bream 

Abramis brama was evaluated using 18S rRNA gene sequencing to clarify previous 

records that were speculated to be misidentifications.  In their analyses, Molnár et al. 

(2009) noted that previous accounts of M. rotundus extended to hosts and tissue locations 

previously undescribed from the type species and type locality.  Sequencing of the 18S 

rRNA gene concluded these were indeed misidentified species of Myxobolus that were 

erroneously reported as M. rotundus and reinforces the importance of using multiple 

identifying characters such as spore and cyst morphology, type host, type locality and 

18S rRNA gene sequencing when characterizing a new species.  Further examination of 

the genetic relatedness of gill infecting species of Myxobolus based on 18S rRNA gene 

analyses revealed close phylogenetic clustering of morphological similar Myxobolus 

species infecting the gills of cyprinids in Hungary, seperate from the muscle infecting 

Myxobolus species.  This further supports the value of including detailed descriptions of 

host species and tissue tropism in new species designations (Eszterbauer 2004).  In the 

past, little detail is given on the precise location within gill tissue of myxosporean 

pseudocyst development. In an effort to provide more definite species descriptions, 

Molnar (2002) provides detailed descriptions of various gill tissue sites that pseudocysts 

of Henneguya, Myxobolus and Thelohanellus form.  The pseudocysts described here of 

H. bulbosus n. sp. displayed an intralamellar type pseudocyst, similar to those described 

by Molnar (2002).  In African catfish Clarias garipenus and tilapia Oreochromis 

niloticus in Egypt, H. suprabranchiae develops in the suprabranchial organ and gill 

tissue, respectively, and has similar presentation as H. bulbosus n. sp. (i.e. distortion of 
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host tissue at infection sites and deformation of gill filaments) (Abdel-Ghaffar et al. 2008, 

Morsy et al. 2012). 

Histologically, the pseudocyst appears similar to other Henneguya species 

affecting the gills except for the very large bullous-like structure, which displaces the 

branchial epithelium.  The apparent inflammatory infiltrate may be the immune response 

to the pseudocyst but more likely is a result of the location of the pseudocyst which is 

close to the lamellar tip, which often houses larger numbers of lymphocytes.  Both of 

these explanations may also be applicable for the increased presence of mucus cells along 

one of the edges of the affected portion of the lamella. 

At this time the potential impact of this parasite on the health of cultured channel 

catfish is uncertain and the complete life cycle of this myxozoan remains unknown.  The 

18S rRNA gene sequence deposited in GenBank will facilitate molecular confirmation of 

the life cycle once the corresponding actinospore stage is identified and sequenced.  To 

date, the definitive oligochaete host of H. bulbosus n. sp. has yet to be isolated, but 

previous studies have demonstrated that the benthic oligochaete Dero digitata is a host to 

numerous species of myxozoan parasites in the catfish industry.  Through a survey of 

over 2,000 D. digitata collected from a commercial channel catfish pond during the 

spring, Rosser et al. (2014; Chapter II) observed six genetically distinct actinospore types 

released from infected D. digitata.  None of the 18S rRNA gene sequences of the 

actinospore types described from commercial catfish ponds were a match to H. bulbosus 

n. sp.  It is important to note that other species of oligochaetes other than D. digitata also 

inhabit the benthic strata of these ponds and have been found to be releasing actinospore 

stages of myxozoan life cycles (Bellerud 1993).  Further research into these other species 
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of benthic oligochaetes is necessary to determine their roles as hosts in unknown 

myxozoan life cycles in catfish production ponds. 

Currently, in the commercial catfish industry, the only myxozoan species of 

economic concern is the pathogenic H. ictaluri, the etiological agent of proliferative gill 

disease (Pote et al. 2000).  To date no other species of Henneguya from catfish 

production ponds have been associated with fish mortalities, although Henneguya spp. 

cysts are often observed in the gills during routine diagnostic screenings.  The distinct 

morphology of the pseudocyst and myxospore stage and molecular sequencing of the 18S 

rRNA gene of Henneguya bulbosus n. sp. confirms this to be a previously undescribed 

Henneguya species infecting the gill tissue of the channel catfish. 
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CHAPTER IV 

SMALL SUBUNIT RIBOSOMAL RNA SEQUENCE LINKS THE MYXOSPORE 

STAGE OF HENNEGUYA MISSISSIPPIENSIS N. SP. FROM CHANNEL  

CATFISH ICTALURUS PUNCTATUS TO AN ACTINOSPORE  

RELEASED BY THE BENTHIC OLIGOCHAETE  

DERO DIGITATA 

4.1 Abstract 

There are more than 200 species of Henneguya described from fish.  Of these, 

only three life cycles have been determined, identifying the actinospore and myxospore 

stages from their respective hosts.  Two of these life cycles involve the channel catfish 

(Ictalurus punctatus) and the freshwater oligochaete Dero digitata.  Herein we 

molecularly confirm the life cycle of a previously undescribed Henneguya sp. by 

matching 18S rRNA gene sequence of the myxospore stage from channel catfish with the 

previously described actinospore stage (Aurantiactinomyxon mississippiensis) from D. 

digitata.  Gill tissue from naturally infected channel catfish contained pseudocysts 

restricted to the apical end of the primary lamellae.  Myxospores were morphologically 

consistent with Henneguya spp. from ictalurid fishes in North America.  The spores 

measured 48.8 ± 4.8 µm (range = 40.7-61.6 µm) in total spore length.  The lanceolate 

spore body was 17.1 ± 1.0 µm (14.4-19.3 µm) in length and 5.0 ± 0.3 µm (4.5-5.5 µm) in 

width.  The two polar capsules were 6.2 ± 0.4 µm (5.8-7.0 µm) long and 5.0 ± 0.3 µm 
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(4.5-5.5 µm) wide.  Polar capsule contained 8-9 coils in the polar filament.  The two 

caudal processes were of equal length, measuring 31.0 ± 4.1 µm (22.9-40.6 µm).  The 

1980 bp 18S rRNA gene sequence obtained from two excised cysts shared 99.4% 

similarity (100% coverage) to the published sequence of A. mississippiensis, an 

actinospore previously described from D. digitata.  The sequence similarity between the 

myxospore from channel catfish and actinospore from D. digitata suggests they are 

conspecific, representing alternate life stages of H. mississippiensis n. sp. 

4.2 Introduction 

There are over 2,000 described species of myxozoan parasites; most of which 

have only been characterized by the myxospore stage (Kent et al. 2001; Lom and Dyková 

2006).  New descriptions of myxozoan species occur at a fairly rapid rate, however 

relative few studies have linked the myxospore to an actinospore stage (Kent et al. 2001; 

Lom and Dyková 2006).  Those known myxozoan life cycles adhere to the findings of 

Markiw and Wolf (1983), involving an actinospore stage released from an aquatic 

oligochaete and a myxospore stage that develops in the fish host.  In the literature, there 

is a paucity of actinospore descriptions from oligochaetes when compared to the myriad 

of myxospore stages described thus far.  Presently, at least 200 actinospores have been 

described, with limited molecular sequence data available for comparisons to myxospore 

stages (Kent et al. 2001; Lom and Dyková 2006).  Myxozoan life cycles have been 

elucidated through experimental infections of naïve hosts, as well as molecular 

comparisons of 18S rRNA gene sequences (Andree et al. 1997; El-Mansy and Molnár 

1997a; El-Mansy and Molnár 1997b; Yokoyama 1997; El-Mansy et al. 1998; Székely et 

al. 1998; Lin et al. 1999; Székely et al. 1999; Molnár et al. 1999; Eszterbauer et al. 2000; 
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Pote et al. 2000; Székely et al. 2001; Székely et al. 2002; Holzer et al. 2004; Kallert et al. 

2005; Bartholomew et al. 2006; Holzer et al. 2006; Køie et al. 2008; Atkinson and 

Bartholomew 2009; Caffara et al. 2009; Székely et al. 2009). Although the genus 

Henneguya consists of more than 200 described species only 3 life cycles are known 

(Lom and Dyková 2006; Eiras and Adriano 2012).  The life cycles of H. exilis (Lin et al. 

1999) and H. ictaluri (Pote et al. 2000) involve the channel catfish Ictalurus punctatus as 

the fish host and the oligochaete Dero digitata as the alternate host, while Henneguya 

nuesslini myxospores from brown trout Salmo trutta and brook trout Salvelinus fontinalis 

have been linked to an actinospore stage from Tubifex tubifex (Kallert et al. 2005). 

Presently, there are 9 species of Henneguya known to parasitize the channel 

catfish, of which only 2 have been linked to actinospore stages (Kudo 1929; Minchew 

1977; Lin et al. 1999; Pote et al. 2000; Griffin et al. 2008; Rosser et al. 2014b).  

Similarly, the oligochaete fauna associated with channel catfish production ponds is 

parasitized by a diversity of actinospore stages, many of which have unknown myxospore 

counterparts (Bellerud 1993, Rosser et al. 2014a).  Bellerud (1993) first described the 

aurantiactinomyxon actinospore Aurantiactinomyxon mississippiensis from Dero digitata 

collected in commercial catfish ponds.  The 18S rRNA gene of A. mississippiensis was 

later sequenced by Hanson et al. (2001).  This current study links the actinospore stage of 

A. mississippiensis with a previously undescribed Henneguya sp. from the gills of the 

channel catfish using 18S rRNA gene sequences.  According to conventional 

classifications of myxozoan parasites (Kent et al. 1994), the actinospore nomenclature is 

suppressed and the new taxon Henneguya mississippiensis n. sp. is proposed. 
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4.3 Materials and Methods 

4.3.1 Myxospore isolation and characterization 

Channel catfish gill tissue collected from a routine diagnostic screening harbored 

myxozoan pseudocysts restricted to the apical portion of the primary lamellae.  When 

ruptured these pseudocysts released myxospore stages consistent with those of the genus 

Henneguya.  Gill tissue was pooled and preserved in 70% molecular biology grade 

ethanol for future analysis.  Individual filaments (n=2) containing pseudocysts were 

excised and placed on glass slides with a drop of nuclease-free water and covered with a 

glass coverslip.  Pseudocysts were mechanically ruptured to release the myxospore stages 

for morphological characterization.  Images of pseudocysts and myxospores were 

captured using a BX-50 Olympus microscope (Olympus Optical Co Ltd, Tokyo, Japan) 

with an attached Olympus DP72 camera and the accompanying DP-2-Twain/cellSens 

software (Olympus Optical Co Ltd, Tokyo, Japan).  Aliquots of ethanol fixed 

myxospores were air dried on clean glass slides, fixed in methanol, stained using 

DiffQuik®, sealed with Permount® (Fisher Scientific, Fair Lawn, New Jersey) and 

deposited in Smithsonian Institution, National Museum of Natural History, Washington 

DC, United States of America (Accession number: Holotype USNM 1270623).  Line 

drawings of representative myxospores were made from micrographs using Adobe 

Illustrator CC 2014 (Adobe, San Jose, California). 

4.3.2 DNA isolation from myxospores 

Aliquots of myxospores were washed into 1.5 ml microcentrifuge tubes and 

suspended in 1 ml of sterile nuclease free water before being centrifuged at 15,000 x g for 

10 minutes.  The supernatant was removed from the pelleted myxospores and DNA was 
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extracted using the QIAGEN DNeasy Blood and Tissue Kit (QIAGEN Inc., Valencia, 

California) following the manufacturer recommendations. 

4.3.3 Sequencing of the 18S rRNA gene 

Amplification of the 18S rRNA gene was carried out using general eukaryotic and 

myxozoan specific primer sets according to Griffin et al. (2008).  Briefly, the general 

eukaryotic primers of Barta et al. (1997) were used in the first polymerase chain reaction 

and the remaining primers were used in nested PCR reactions as previously described 

(Griffin et al. 2008; Rosser et al. 2014a,b).  Amplicons were visualized under ultraviolet 

light on 1.2% agarose gels stained with 0.1 μg/ml ethidium bromide and compared to a 

concurrently run molecular weight marker (HyperLadder™ 50bp, Bioline, London, 

United Kingdom) to confirm the presence of appropriate sized bands.  Amplicons were 

purified using the QIAquick PCR purification kit (QIAGEN, Valencia, California), 

quantified spectrophotometrically (NanoDrop Technologies, Inc., Wilmington, 

Delaware), and sequenced directly from both strands.  Sequencing was performed using 

ABI BigDye™ chemistry (Applied Biosystems, Foster City, California) and read on an 

ABI Prism 3730™ automated sequencer.  All sequencing reads were edited manually and 

aligned using SeqMan™ (DNAStar, Madison, Wisconsin).  The contiguous sequence 

was submitted to GenBank (Accession number: KP404438). 

4.3.4 Phylogenetic analyses 

The consensus sequence was analyzed against other published myxozoan 

sequences available in the National Center for Biotechnology Information (NCBI) non-

redundant nucleotide database using the Blastn suite for highly similar sequences 
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(Altschul et al. 1990).  The most closely related published sequences greater than 1500 bp 

in length (n=40) were downloaded and used in the construction of phylogenetic trees 

using Molecular Evolutionary Genetic Analysis 6.0 (MEGA6) (Tamura et al. 2013).  The 

40 sequences were aligned using the Clustal W utility and trimmed to equal lengths.  The 

final dataset consisted of 1155 positions.  Phylogenetic placement of the newly 

sequenced myxospore isolate was inferred by the maximum likelihood method using the 

Tamura-Nei model and the complete deletion option (Tamura and Nei 1993).  The final 

tree was constructed from 1000 bootstrap replicates with the initial tree being obtained by 

maximum parsimony (Felsenstein 1985). 

4.4 Results 

4.4.1 Myxospore morphology 

Pseudocysts spherical, located at the apical portion of the primary lamellae and 

approximately 0.3 – 0.5 mm in diameter (Figure 4.1).  Intralamellar pseudocyst type 

according to Molnár (2002).  Myxospores characteristic of the genus Henneguya (Lom 

and Dyková 2006).  Spore body, lanceolate, 17.1 ± 1.0 µm (mean ± standard deviation; 

range = 14.4-19.3 µm) in length and 5.0 ± 0.3 µm (4.5-5.5 µm) in width.  Polar capsules, 

2, 6.2 ± 0.4 µm (5.8-7.0 µm) in length and 1.7 ± 0.2 µm (1.4-1.9 µm) in width.  Caudal 

processes, 2, 31.0 ± 4.1 µm (22.9-40.6 µm) in length.  Total spore length 48.8 ± 4.8 µm 

(40.7-61.6 µm). Coils in polar filament, 8-9 when observable.  Measurements derived 

from 22 myxospores (Figures 4.2 and 4.3). 
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Figure 4.1 Light microscopic image of apical pseudocyst of Henneguya 
mississippiensis n. sp. 
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Figure 4.2 Wet mount preparation of myxospores of Henneguya mississippiensis n. sp. 

Scale bar represents 20 µm. 
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Figure 4.3 Line drawing of Henneguya mississippiensis n. sp. myxospore. 

Scale bar represents 10 µm. 

The myxospores share overlapping characteristics with other Henneguya species 

from North American ictalurid fish (Table 4.1).  H. mississippiensis n. sp. was 

morphologically most similar to H. diversis, reported both internally (liver and kidney) 

and externally as tumor-like growths in the channel catfish (Minchew 1977).  However, 



www.manaraa.com

 

106 

the spore body of H. mississippiensis n. sp. was longer (17.1 µm versus 14.8 µm) and 

wider (5.0 µm versus 4.0 µm) and the caudal processes of H. mississippiensis n. sp. were 

slightly shorter (31.0 µm versus 34.6 µm). 
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4.4.2 Molecular analyses of myxospores 

The 1980 bp 18S rRNA gene sequence was used in a BLASTn search for highly 

similar sequences in the NCBI nr/nt database (Altschul et al. 1990).  The closest match 

(99.4% (1970/1982 bp) sequence similarity; 100% coverage) was the aurantiactinomyxon 

actinospore of A. mississippiensis (AF021878).  The second closest matches were the 

myxospores of H. adiposa (95% similarity and 100% coverage; EU492929), which forms 

pseudocysts on the adipose fin of the channel catfish (Griffin et al. 2009) and H. ictaluri  

(95% similarity and 100% coverage; AF195510), the causative agent of proliferative gill 

disease in channel catfish (Pote et al. 2000).  Phylogenetic analysis using maximum 

likelihood clustered the myxospore isolate with its corresponding actinospore stage, A. 

mississippiensis, within a larger cluster of Henneguya spp. from ictalurid fishes in North 

America (Figure 4.4). 
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Figure 4.4 Maximum likelihood analysis of Henneguya mississippiensis 18S rRNA 
gene sequence. 

Fish hosts are indicated in parentheses.  Values at each node represent bootstrap 
confidence values (n=1,000 replicates).  Circle represents the clustering of the H. 
mississippiensis n. sp. isolate in this paper with the previously sequenced actinospore 
isolate Aurantiactinomyxon mississippiensis.  Bold branches represent the North 
American ictalurid infecting clade.  Bootstrap values less than 50 have been omitted. 
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4.4.3 Taxonomic summary 

Type species:  Henneguya mississippiensis n. sp. (Myxozoa:  Myxosporea) 

Type host:  Ictalurus punctatus (Rafinesque, 1818) (Siluriformes, Ictaluridae) 

Site of infection:  apical portion of the primary gill lamellae 

Type locality:  commercial catfish pond, Washington County, MS, USA 

Materials deposited:  holotype USNM 1270623, Smithsonian Institution, National  

Museum of Natural History, Washington DC, USA 

4.5 Discussion 

Henneguya mississippiensis n. sp. parasitizes the gills of commercially raised 

channel catfish, with pseudocysts forming toward the apical end of the primary lamellae.  

Myxozoans that form apical lamellar pseudocysts have been described in other fish 

species, but this is the first description in channel catfish.  In South America plasmodia of 

Henneguya azevedoi are located primarily, but not limited to, the apical end of the 

lamellae of piava Leporinus obtusidens (Barassa et al. 2012).  In a survey of Asian redtail 

catfish Hemibagrus nemurus from Malaysia, Henneguya mystusia was observed forming 

large plasmodia at the tip of gill filaments, deforming the lamellar structure.  These large 

plasmodia were thought to be formed by the fusion of smaller neighboring plasmodia 

(Molnár et al. 2006).  Lastly, Myxobolus macrocapsularis forms plasmodia in the afferent 

artery at the apical end of the gill filaments of white bream Blicca bjoerkna and common 

bream Abramis brama in Europe (Székely et al. 2002; Molnár et al. 2011). 

The myxospores are morphologically unremarkable and bear similarities to other 

Henneguya species described from the channel catfish.  Therefore, in order to more 

accurately describe the isolate, sequencing of the 18S rRNA gene was performed and 
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phylogenetic analysis conducted.  The myxospore isolate shared >99.4 %(1970/1982 bp) 

sequence similarity with the aurantiactinomyxon actinospore A. mississippiensis, 

suggesting these stages are conspecific.  This in line with the intraspecific variability 

reported for other myxozoans (Kent et al. 1998; Andree et al. 1999; Hallett et al. 2004; 

Easy et al. 2005; Whipps et al. 2006; Bartosova and Fiala 2011; Griffin et al. 2014; Scott 

et al. 2014).  Following the guidelines for designating species names within the Myxozoa, 

the myxospore isolate has priority over the actinospore, even when the latter is described 

first (Kent et al. 1994).  The actinospore genus name is suppressed and the myxospore 

genus name is adopted.  As a result, we propose the adoption of the new taxon H. 

mississippiensis n. sp. 

Phylogenetic analysis confirmed the placement of H. mississippiensis n. sp. 

among the other species of Henneguya parasitizing ictalurid fish species in North 

America with high bootstrap support (Figure 4.4).  Henneguya mississippiensis represents 

the fourth Henneguya sp. life cycle to be described.  Pote et al. (2000) elucidated the life 

cycle of H. ictaluri by exposing naïve channel catfish to aurantiactinomyxon actinospores 

isolated from naturally infected D. digitata.  At 90 days post exposure, Henneguya 

myxospores were detected in the gills of infected fish.  Furthermore when sequenced the 

18S rRNA gene sequences of the actinospore and myxospore stages were identical (Pote 

et al. 2000).  Similarly, Kallert et al. (2005) exposed naïve brown trout, brook trout, and 

common carp to triactinomyxon actinospores from naturally infected T. tubifex and 

observed Henneguya myxospores in connective tissue at 102 days post exposure.  In 

addition, a 1417 bp fragment of the 18S rRNA gene was identical for both the 

actinospore and myxospore stages (Kallert et al. 2005).  Lin et al. (1999) sequenced the 
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18S rRNA gene of an aurantiactinomyxon actinospore stage from D. digitata collected 

from commercial catfish ponds and the myxospore stages of H. exilis from the gill tissue 

of naturally infected channel catfish.  Alignments of the two sequences from each stage 

demonstrated them to be conspecific (Lin et al. 1999). 

Herein we unite the aurantiactinomyxon actinospore stage of A. mississippiensis, 

previously described from the oligochaete Dero digitata, with the corresponding 

myxospore stage of H. mississippiensis n. sp. from the gills of channel catfish using 18S 

rRNA gene sequences.  Numerous researchers have employed this method to elucidate 

myxozoan life cycles, while others utilize experimental infection studies when capable 

(Andree et al. 1997; Lin et al. 1999; Pote et al. 2000; Kallert et al. 2005).  As attested by 

Kallert et al. (2005), life cycle studies of myxozoan parasites are often labor intensive and 

require sources and maintenance of fish and oligochaete cultures for extended periods of 

time and require knowledge of both hosts involved in the life cycle.  Currently, a 

laboratory model for maintaining Henneguya spp. from ictalurid fish and their 

oligochaete hosts does not exist.  However culture methods for D. digitata have been 

established (Mischke and Griffin 2011).  Dero digitata has been identified as an 

oligochaete host of at least 7 myxozoans associated with channel catfish ponds (Bellerud 

1993; Rosser et al. 2014a).  Future research will focus on experimental elucidation of 

these currently unknown life cycles.  Understanding the life cycle dynamics of myxozoan 

parasites of farm raised catfish is the first step in developing management practices to 

minimize the impact of these parasites on catfish aquaculture. 
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CHAPTER V 

MORPHOLOGICAL, HISTOLOGICAL AND MOLECULAR DESCRIPTION  

OF UNICAUDA FIMBRETHILAE N. SP. (CNIDARIA:  MYXOSPOREA: 

MYXOBOLIDAE) FROM THE INTESTINAL TRACT OF  

CHANNEL CATFISH ICTALURUS PUNCTATUS 

5.1 Abstract 

The channel catfish Ictalurus punctatus is a known host for 10 species of 

Henneguya, but few other myxozoan genera are described from channel catfish.  

Unicauda is a genus of myxozoan parasites within the family Myxobolidae that consists 

of 10 valid species from freshwater fish.   Herein, we describe a novel species of 

Unicauda from the intestinal tract of farm-raised channel catfish in Mississippi, USA.  

Myxospores were consistent with the genus Unicauda, but exhibited a unique branching 

at the terminal end of the caudal process that has not previously been reported.  

Myxospores measured 90.39 ± 14.97 µm (mean ± SD; range=70.88–126.02 µm) in total 

length.  The spherical spore body measured 7.31 ± 0.26 µm (6.75–7.84 µm) in length and 

7.01 ± 0.63 µm (6.1–8.01 µm) in width.  The two polar capsules measured 3.45 ± 0.33 

µm (3.02–4.03 µm) in length and 2.65 ± 0.32 µm (2.18–3.11 µm) in width.  The single 

caudal process measured 82.98 ± 14.97 µm (63.39–118.63 µm) in length from the base of 

the spore body to the end of the most terminal projection.  Terminal projections measured 

26.83 ± 8.8 µm (12.34–42.29 µm) in length and 0.95 ± 0.23 µm (0.52–1.6 µm) in width.  



www.manaraa.com

 

119 

The 18S rRNA gene sequence obtained did not match any published sequences.  Given 

the uniqueness of the myxospore morphology, histological presentation, and gene 

sequence data, we describe this as an unreported species, Unicauda fimbrethilae n. sp. 

5.2 Introduction 

Myxozoans are common metazoan parasites of freshwater and marine fish 

worldwide, with a few exceptions existing in higher vertebrates (Kent et al. 2001; Lom 

and Dyková 2006). The typical myxozoan life cycle involves the actinospore stage 

released by an annelid worm and the myxospore stage which develops in the fish host. 

The most extensively studied myxozoans are associated with disease in economically 

important cultured and wild fishes, and are predominantly members of the family 

Myxobolidae (Lom and Dyková 2006).  Of the myxobolids, the genera Myxobolus (Eiras 

et al. 2014) and Henneguya (Eiras and Adriano 2012) are the most comprehensively 

studied and have the most described species.  

Unicauda species are also classified within the Myxobolidae, but are poorly 

represented.  Recent studies have determined there to be only 10 valid species (Cone and 

Melendy 2000; Fiala et al. 2015).  The myxospores of Unicauda are characterized by a 

spherical spore body containing two polar capsules located at the apex of the spore and a 

single caudal process.  To date, Unicauda has only been described from freshwater fish 

species, primarily of the order Cypriniformes.  Unicauda pelteobagrus from 

Pelteobagrus fulvidraco, P. nitigus, and P. vachelli in China is the only valid species 

described from the order Siluriformes (Chen and Ma 1998; Cone and Melendy 2000).  

Many of these species exist as single records, with the majority lacking histopathological 

descriptions of associated infections and 18S rRNA sequence data (Cone and Melendy 
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2000).  At present, an actinospore stage from an alternate host has not been identified for 

any species within the genus. 

Herein we describe the first species of Unicauda parasitizing channel catfish.  The 

unique morphological description, histological presentation, and 18S rRNA gene 

sequence support this as a new species, Unicauda fimbrethilae n. sp., found parasitizing 

the intestinal tract of naturally infected channel catfish. 

5.3 Materials and methods 

5.3.1 Case history and histology 

Channel catfish from a production pond in Eastern Mississippi were submitted in 

late March 2015 to the Aquatic Diagnostic Laboratory at the Mississippi State University 

College of Veterinary Medicine. The pond was experiencing increased mortalities in 

adult fish. Specimens were subjected to a full examination, including gill clips and mucus 

wet mounts, as well as internal examination. The spleen and kidney (mesonephros) were 

swab cultured for aerobic bacteria. A full complement of tissues was fixed in 10% neutral 

buffered formalin. Tissues were trimmed and embedded in paraffin for standard 

microtome sectioning and staining with hematoxylin and eosin (H & E). Select sections 

were also histochemically stained using standard periodic acid-Schiff (PAS) and Giemsa 

staining methods. 

5.3.2 Fish collection 

Initial diagnosis identified the presence of myxozoan parasites in the esophagus, 

warranting further investigation.  Twenty-one live moribund, market-size channel catfish 

(~0.5-0.75 kg) were collected from the banks of the affected pond and transported live to 
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the Mississippi State University College of Veterinary Medicine for necropsy.  Fish were 

euthanized with an overdose of MS-222 (tricaine methanesulfonate, Tricaine-S®, 

Western Chemical Inc., Ferndale, Washington) and examined both internally and 

externally for myxozoan parasites.  Fish were opened along the ventral surface by sharp 

dissection and the gastrointestinal tract (esophagus to anus) was removed.  The 

esophagus and anus were opened longitudinally and scrapings at each site were made 

using a sterile scalpel blade, placed on a clean glass microscope slide with physiological 

saline and coverslipped.  Smears were viewed using a BH-2 Olympus microscope 

(Olympus Optical Co Ltd, Tokyo, Japan) for detection of myxozoans. 

5.3.3 Myxospore collection and morphological characterization 

Myxospores observed on intestinal scraping smears were washed into 50-ml 

conical centrifuge tubes and fixed in 70% molecular biology grade ethanol. Myxospores 

were later photographed using a BX-50 Olympus microscope with an Olympus DP72 

camera with the DP-2-Twain/cellSens software (Olympus Optical Co Ltd, Tokyo, Japan).  

Measurements were made from digital images taken of ethanol fixed myxospores in 

accordance with previous descriptions of Unicauda species (Minchew, 1981; Cone and 

Melendy, 2000). 

5.3.4 Molecular characterization of myxospores 

Myxospores were pelleted by centrifugation at 10,000 x g for 5 min.  Genomic 

DNA was extracted from pelleted myxospores using the DNeasy Blood and Tissue Kit 

(QIAGEN, Valencia, California).  The 18S rRNA gene was amplified by polymerase 

chain reaction (PCR) using universal (Barta et al. 1997) and myxozoan specific primers 
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(Kent et al. 2000; Hallett and Diamant, 2001; Hanson et al. 2001; Fiala 2006; Griffin et 

al. 2008) (Table 5.1).  The 25-µl reactions consisted of 22 µl of Platinum Taq Supermix 

(Invitrogen, Carlsbad, California), 10 pmol of each primer, 1 µl of genomic DNA 

template and nuclease-free water to volume.  The following primers were paired in the 

PCRs: ERIB1 and ACT1R, MyxospecF and MyxospecR, Myxo1F and Myxgen3R, 

Genmyxo4 and ERIB10, and H2 and H9.  All amplifications were performed on an MJ 

Research PTC-200 thermocycler (GMI, Ramsey, Minnesota) with a cycling protocol 

consisting of an initial denaturation of 95ºC for 10 min, followed by 35 cycles of 95ºC for 

1 min, 52ºC for 1 min, 72ºC for 2 min, and a final extension at 72ºC for 10 min.  

Amplicons were electrophoresed through 1.2% agarose gels in the presence of ethidium 

bromide (0.5 mg/ml) and visualized under UV light.  Band sizes were estimated by 

comparison with a concurrently run molecular weight marker (HyperLadder™ 50 bp, 

Bioline, London, United Kingdom) to confirm the presence of the appropriate sized 

bands.  Amplicons were purified using the QIAquick PCR Purification Kit (QIAGEN, 

Valencia, California) and sequenced directly (Eurofins MWG Operon LLC, Huntsville, 

Alabama).  Individual sequencing reads were assembled into a single contiguous 

sequence using the SeqMan™ utility of the Lasergene package (DNASTAR, Madison, 

Wisconsin).  The assembled 18S rDNA sequence was compared to somewhat similar 

sequences deposited into the National Center for Biotechnology Information non-

redundant nucleotide database using a BLASTn search (Altschul et al. 1990).  

Phylogenetic histories were inferred from an alignment of 18S rRNA gene sequences of 

closely related myxozoans identified by the BLASTn search and downloaded from the 

NCBI database.  Only published sequences greater than 1500-bp were used in the 
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alignment.  Alignment and phylogenetic analysis were conducted in MEGA6 (Tamura et 

al. 2013).  The final dataset contained 1170 positions and phylogenetic placement of the 

novel Unicauda species was determined by maximum likelihood using the Tamura-Nei 

model (Tamura and Nei 1993).  The initial tree was obtained by maximum parsimony 

and the final tree was constructed from 1000 bootstrap replicates (Felsenstein 1985). 

Table 5.1 Primers used in ampflication of the 18S rRNA gene. 

 

5.4 Results 

5.4.1 Myxospore morphology 

Myxozoan plasmodia were not observed grossly or histologically. Myxospores 

were morphologically consistent with the genus Unicauda (Davis 1944), but differed 

from all previously described species in that many myxospores possessed a single caudal 

process that differentiated terminally into many root-like projections of varying length 

and number, thought to signify maturity (Figures 5.1 and 5.2). Less mature myxospores 

(Figures 5.1C) bore resemblance to previous descriptions of the genus (Lom and Dyková 

2006).  Spore body, spherical 7.31 ± 0.26 µm (mean ± standard deviation; range = 6.75–

7.84 µm) in length and 7.01 ± 0.63 µm (6.1–8.01 µm) in width.  Polar capsules, two, 3.45 

Primer Sequence (5’-3’) Reference 
ACT1R AATTTCACCTCTCGCTGCCA Hallett & Diamant (2001) 
ERIB1 ACCTGGTTGATCCTGCCAG Barta et al. (1997) 
ERIB10 CCTCCGCAGGTTCACCTACGG Barta et al. (1997) 
Genmyxo4 GGATGTTGGTTCCGTATTGG Griffin et al. (2008) 
H2 CGACTTTTACTTCCTCGAAATTGC Hanson et al. (2001) 
H9 TTACCTGGTCCGGACATCAA Hanson et al. (2001) 
Myxo1F CTGCCCTATCAACTWGTT Kent et al. 2000 
Myxogen3R TGCCTTCGCATTYGTTAGTCC Kent et al. 2000 
MyxospecF TTCTGCCCTATCAACTWGTTG Fiala (2006) 
MyxospecR GGTTTCNCDGRGGGMCCAAC Fiala (2006) 
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± 0.33 µm (3.02–4.03 µm) in length and 2.65 ± 0.32 µm (2.18–3.11 µm) in width.  

Caudal process, one, 82.98 ± 14.97 µm (63.39–118.63 µm) in length from the base of the 

spore body to the end of the most terminal projection.  Projections from the caudal 

process (Figures 5.1D-E) were variable, 26.83 ± 8.8 µm (12.34–42.29 µm) in length and 

0.95 ± 0.23 µm (0.52–1.6 µm) in width.  Total spore length 90.39 ± 14.97 µm (70.88–

126.02 µm).  Coils in polar filament, four, when observable.  Measurements derived from 

20 myxospores.  Immature spores were more variable in length of the caudal process and 

did not have the unique branching projections but ended bluntly. 

Morphologically the spores shared overlapping features with several species of 

Unicauda described from freshwater fish (Table 5.2).  The total spore length of 

myxospores of Unicauda fimbrethilae n. sp. was slightly less on average, but shared 

overlapping ranges with Unicauda magna (90.39 µm vs 109.6 µm) described from 

Pimephales promelas (Minchew, 1981). Similarly a vacuole was visible in some 

myxospores, but other morphological features were not consistent and differed 

considerably.  Indeed the most notable feature of the spores of U. fimbrethilae n. sp. is 

the terminal branches of the caudal process, a feature that to our knowledge has not been 

described for any member of the Myxobolidae. 
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Figure 5.1 Photomicrographs of myxospores of Unicauda fimbrethilae n. sp. 

(A, B) Mature spores of Unicauda fimbrethilae n. sp. (C) Immature spore of U. 
fimbrethilae n. sp. with blunted caudal process. (D, E) Variability in the morphology of 
the terminal projections of mature spores.  Scale bars represent 20 µm. 
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Figure 5.2 Line drawing of mature Unicauda fimbrethilae n. sp. myxospore. 

Scale bar represents 20 µm. 
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5.4.2 Gross and histopathology 

Fish exhibited severe skin ulceration with secondary oomycete infection (Winter 

Kill Syndrome) as well as a systemic Aeromonas sobria infection. Examination of the 

rectum revealed numerous intraepithelial myxozoan myxospores and developmental 

stages within the epithelium. Severe inflammation with epithelial injury and erosion 

affected greater than 50% of the rectal mucosa and submucosa (Figure 5.3A). The 

epithelium was irregular and highly vacuolated due to parasitophorous vacuoles. As a 

result of significant erosion, epithelial cells were hyperplastic, being large and 

pleomorphic with large nuclei and nucleoli. The superficial lamina propria was expanded 

by many large macrophages which were replaced by lymphocytes in the deeper tissues 

(Figure 5.3B). Within epithelial cells, mature spores inhabited spacious clear vacuoles, 

while developmental stages were tightly clustered in smaller vacuoles (Figure 5.3C). 

Occasional small granulomas were present in the outer muscularis of severely affected 

segments; no parasites were identified within. Small numbers of intraepithelial organisms 

were present in the mucosa of the esophagus and rarely in the intestine. 
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Figure 5.3 Photomicrographs of the rectum of a channel catfish with a Unicauda 
fimbrethilae n. sp. infection. 

(A) Cross section of the rectum.  Approximately 50% of the mucosa is normal (arrow), 
while the remaining tissues have a thin epithelium with abundant cellularity 
(inflammation) in the lamina propria (arrowhead).  Giemsa 20x.  Scale bar = 500 µm.  
(B) The epithelium is eroded (arrow), and many cells are distended by large vacuoles 
containing spores (black arrowhead).  Many macrophages and lymphocytes are present in 
the lamina propria (white arrowhead).  Periodic acid-Schiff 200x.  Scale bar = 50 µm. (C) 
Epithelial cells are markedly distended by mature spores within spacious vacuoles 
(arrowhead) or developmental stages (arrows).  In this section almost all cells are 
parasitized. Hematoxylin and eosin 400x.  Scale bar = 20 µm. 
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5.4.3 Molecular characterization of myxospores 

The 1908-bp 18S rRNA gene sequence (KT072742) was compared to other 

closely related myxozoan species deposited in the NCBI nr/nt database.  Unicauda 

fimbrethilae n. sp. was the closest match to Unicauda pelteobagrus (84.5% sequence 

identity; 98.0% coverage; KC193254) from the muscle of Pelteobagrus fulvidraco in 

China.  The next closest match was Myxobolus aureus (84.6% sequence identity; 92.0% 

coverage; KF296348) from the liver of Salminus brasiliensis from Brazil and an 

unpublished sequence of Henneguya mystusia (89.7% sequence identity; 72.0% 

coverage; EU732603) from the gills of Hemibagrus nemurus from Malaysia.  

Phylogenetic placement of the isolate was within a clade containing the single species of 

Unicauda in the NCBI database (Figure 5.4) sister to other myxobolid myxozoans, 

confirming placement within the family Myxobolidae. 
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Figure 5.4 Maximum likelihood analysis of the 18S SSU rRNA gene sequence of 
Unicauda fimbrethilae n. sp. 

Maximum likelihood tee of the 18S SSU rRNA gene sequence of Unicauda fimbrethilae 
n. sp. and relevant myxozoan sequences (fish host) obtained by a blast search of the 
NCBI nr/nt database and rooted at Tetracapsuloides bryosalmonae.  Numbers at the 
nodes represent bootstrap confidence values (n=1,000 replicates). 
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5.4.4 Taxonomic summary 

Species:  Unicauda fimbrethilae n. sp. (Cnidaria:  Myxosporea: 

Myxobolidae) 

Type host:  Ictalurus punctatus (Rafinesque, 1818) (Siluriformes: Ictaluridae) 

Site of infection: throughout intestinal tract 

Prevalence:  12 of 21 fish (57.14%) 

Locality:  Commercial catfish pond, Brooksville, MS, Noxubee County 

Specimens deposited:  holotype USNM 1283045; paratypes USNM 1283046–

1283047 Smithsonian Institution, National Museum of Natural History, 

Washington DC, USA 

Etymology:  In reference to the root-like projections from the caudal process, the 

species is named after a fictional character, Fimbrethil of the tree-like race of 

Ents, from J.R.R. Tolkien’s epic trilogy The Lord of the Rings. 

5.5 Discussion 

The genus Unicauda was first erected by Davis (1944) to include Henneguya-like 

species that have a single caudal process.  Cone and Melendy (2000) reviewed the 

members of the genus and concluded that only 10 of the 26 previously described species 

were valid. Furthermore Cone and Melendy (2000) considered U. plasmodia (Davis 

1922, 1944; synonymous with Henneguya plasmodia) from the gills and U. limatula 

(Meglitsch 1937; Davis, 1944; synonymous with Henneguya limatula) from the gall 

bladder of the channel catfish as poorly described and invalid members of the genus.  

Indeed the spore body of H. limatula is lanceolate shaped and some spores were 

acknowledged to have bifurcated caudal processes consistent with the genus Henneguya 
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(Meglitsch 1937). The original description of Henneguya plasmodia is most likely of 

immature spores of a Henneguya species and has not been reported since its discovery.  

The majority of the valid members of the genus Unicauda are described from fish in the 

order Cypriniformes from China (Chen and Ma 1998), Georgia (Cone and Melendy, 

2000), Iraq (Rahemo 1976), Spain (Cone and Melendy 2000), the US (Gurley 1893; 

Ward 1919; Kudo 1934; Minchew 1981) and a single species from a siluriform fish in 

China (Chen and Ma 1998).  Morphologically U. fimbrethilae n. sp. shared several 

overlapping features with U. magna from the fins of fathead minnow from Pennsylvania 

(Minchew 1981).  However, myxospores of U. magna typically had finely tapered caudal 

processes of varying lengths, compared to the elaborate branching pattern of the caudal 

process of mature spores of U. fimbrethilae n. sp. (Minchew 1981). 

A single unidentified species of Unicauda has been reported from the intestinal 

tract of the elephantnose fish (Gnathonemus petersii) imported from Nigeria (Caffara et 

al. 2007).  Infected fish exhibited anorexia, lethargy, cachexia, and weight loss. While 

plasmodia of this species were detected histologically in the tunica muscularis and tunica 

serosa, free myxospores were found in the lumen.  Some areas of multifocal epithelial 

necrosis were also observed.  Myxospores were also observed on wet mount slide 

preparations of the intestinal wall, kidney and liver (Caffara et al. 2007).  

The catfish in this case were dying from causes other than U. fimbrethilae n. sp., 

however the degree of infection and inflammation contributed, perhaps significantly, to 

disease. Infection was restricted to the intestine, with a predominance in the rectum and 

esophagus. In our catfish, the degree of damage in the rectum due to infection was severe, 
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with mucosal erosion and thickening of the lamina propria by inflammation, effectively 

narrowing the gut lumen.  

Myxozoan species that primarily infect the intestinal epithelium, such as 

Enteromyxum leei in warmwater marine culture species, are known to cause significant 

disease in aquaculture species in the form of severe enteritis and emaciation. 

Enteromyxum leei induces cachexia by causing anorexia in addition to impaired nutrient 

uptake and osmoregulation from intestinal damage (Sitjà-Bobadilla and Palenzuela, 

2012). Severe infection with E. leei in sea bream (Sparus aurata) is seen throughout the 

intestine, including severe disease in the rectum (Fleurance et al. 2008).  The Unicauda 

reported from Caffara et al. (2007) although present in the blood vessels and lamina 

propria, were not identified within enterocytes.   

Phylogenetic analysis clusters U. fimbrethilae n. sp. with U. pelteobagrus from 

China, confirming placement within the Myxobolidae.   Molecularly U. fimbrethilae n. 

sp. does not match any deposited myxozoan sequence in the NCBI nr/nt database.  In 

addition, 18S rRNA gene sequences of actinospore stages from a recent survey of 

oligochaetes from commercial catfish ponds did not match the 18S rRNA gene sequence 

of U. fimbrethilae n. sp. (Rosser et al. 2014b).   

In the southeastern United States, and more specifically Mississippi, catfish 

aquaculture is an economically important industry (Hargreaves and Tucker, 2004).  

Infectious diseases are a major hindrance to production, especially the myxozoan 

Henneguya ictaluri, which is the causative agent of proliferative gill disease (PGD) in 

channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus) x channel 

catfish hybrids (Pote et al. 2000; Bosworth et al. 2003; Griffin et. al., 2010).  Henneguya 
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ictaluri is the most commonly diagnosed parasitic infection and the third most common 

infectious disease associated with catfish aquaculture in the southeastern United States.  

In addition to the pathogenic H. ictaluri, there are at least 9 other Henneguya species that 

have been identified in commercially raised channel catfish.  Pseudocysts of Henneguya 

species are a routine finding in diagnostic case submissions to the Aquatic Research and 

Diagnostic Laboratory of the Thad Cochran National Warmwater Aquaculture Center in 

Stoneville, MS but are often not associated with disease (Pote et al. 2012; Rosser et al. 

2014a, 2015).   

Limited information is available on other myxozoan genera that infect channel 

catfish.  However there are records of other myxozoans parasitizing the channel catfish in 

North America.  Myxidium bellum has been identified from the gall bladder of infected 

channel catfish from Illinois (Meglitsch 1937).  Sphaerospora ictaluri was described 

from the kidney of channel catfish from California (Hedrick et al. 1990).  Since their 

descriptions M. bellum and S. ictaluri have not been described or reported elsewhere.  

Interestingly no Myxobolus sp. has been identified in the channel catfish to date, as the 

predominant myxozoan species that infect cultured catfish belong to the genus 

Henneguya. 

This is the first account of a species of Unicauda infecting channel catfish, as well 

as the first record of a myxozoan that develops in the intestinal tract of channel catfish.  

Based on the structure of the caudal process and spherical spore body characteristic of the 

genus, we propose the isolate described here represents a previously undescribed species 

within the myxozoan family Myxobolidae, Unicauda fimbrethilae n. sp. 
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CHAPTER VI 

VERRUCUOUS DERMAL HENNEGUYOSIS ASSOCIATED WITH HENNEGUYA 

EXILIS (KUDO, 1929) (CNIDARIA:  MYXOBOLIDAE) A PARASITE OF THE 

CHANNEL CATFISH ICTALURUS PUNCTATUS (RAFINESQUE, 1818) 

6.1 Abstract 

Henneguya exilis is a myxozoan parasite commonly reported from the gills of 

channel catfish in North America.  Limited reports exist of H. exilis parasitizing the skin 

of catfish, but these lack morphologic and molecular confirmation.  Herein we provide 

the first report of H. exilis parasitizing the skin of a commercially raised channel catfish 

using histology supplemented with morphological and molecular data.  The 18S rDNA 

gene sequence of the present H. exilis isolate was a 100% match (1959/1959 bp) to the 

previous published sequence.  Histopathological examination revealed the epidermis in 

the affected area had been completely replaced by layers of pseudocysts of varying sizes 

(~ 25-200µm in diameter) containing myxospores of different stages of maturation.  In 

some areas, the pseudocysts even extended past the dermis and were present in the fascial 

planes separating the muscle bundles or were present in the tissue between the bony 

elements of the lepidotrichia.  The effects of parasitizing multiple tissue sites on the 

health of catfish are unknown and further research is needed to determine what triggers 

the maturation of this parasite in non-branchial sites. 
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6.2 Introduction 

Henneguya spp. are cosmopolitan myxozoan parasites found in various organ 

systems of marine and freshwater fish.  They represent the second largest genus of 

myxozoans, with several species pathogenic to the fish host (Eiras and Adriano 2012).  

Catfish producers in the southeastern United States struggle with seasonal outbreaks of 

proliferative gill disease (PGD) caused by the myxozoan Henneguya ictaluri (Pote et al. 

2000; Pote et al. 2012).  At present, three Henneguya spp. associated with catfish 

aquaculture, H. exilis, H. ictaluri and H. mississippiensis, have had the myxospore stage 

in the fish linked to an actinospore stage in the benthic oligochaete, Dero digitata (Lin et 

al. 1999; Pote et al. 2000; Rosser et al. 2015).  In addition to these three, seven other 

species of Henneguya have been reported from channel catfish (Minchew 1977; Pote et 

al. 2012; Rosser et al. 2014b, 2015), and a recent molecular survey of actinospore stages 

found in catfish ponds suggests the existence of several more (Rosser et al. 2014a). 

While most of the Henneguya spp. associated with North American ictalurid 

fishes are limited to the gills, several have been reported from other tissues.  Henneguya 

diversis was described from liver, kidneys and connective tissues of muscle and fins 

(Minchew 1977).   Henneguya exilis has been described from both gills and the epidermis 

of the channel catfish (Kudo 1929; Meglitsch 1937).  Henneguya pellis and H. 

sutherlandi infect the epidermis of blue catfish (Ictalurus furcatus) and channel catfish, 

respectively, forming large epidermal pseudocysts (Minchew 1977; Griffin et al. 2008, 

2009a).  Henneguya adiposa forms pseudocysts on the adipose fin of channel catfish 

(Minchew 1977; Griffin et al. 2009b) and H. gurlei forms plasmodia on the dorsal, 

pectoral and anal fins of the brown bullhead (Ameiurus nebulosus) (Iwanowicz 2008). 
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6.3 Materials and Methods 

6.3.1 Fish collection 

In the spring of 2015, five channel catfish fingerlings (~6-9 cm in length) from a 

commercial catfish farm were submitted to the Aquatic Research and Diagnostic 

Laboratory because of mortalities. Diagnostic workup revealed that all 5 fish had severe 

proliferative gill disease, based on microscopic examination of gill biopsies.  In addition, 

one fish cultured positive for Edwardsiella ictualuri, the causative agent of Enteric 

Septicemia of Catfish (Hawke et al. 1981).  One of the fingerlings was noted to have an 

extensive, yellowish tan, soft, growth with a nodular surface covering approximately one-

sixth of the body at the level of the adipose fin.  The adipose fin did not appear to be 

affected (Figure 6.1).  This growth extended on both sides of the body affecting the distal 

third of the ventral fin.  Portions of the ventral fin were eroded with loss of tissue and 

exposing tips of several of the lepodotrichia or soft fin rays. 
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Figure 6.1 Gross appearance of the affected fish showing the extensive nature of the 
lesion. 

 

6.3.2 Histopathological and morphological characterization of myxospores 

Biopsies of infected tissue were fixed in 70% molecular grade ethanol for 

molecular characterization and 10% neutral buffered formalin for histological analysis.  

Ethanol-fixed myxospores were mounted on slides and coverslipped, and representative 

images were digitally captured using a BX-50 Olympus microscope (Olympus Optical 

Co Ltd, Tokyo, Japan) mounted with an Olympus DP72 camera and DP-2-

Twain/cellSens software (Olympus Optical Co Ltd, Tokyo, Japan).  Characters used for 

the description of Henneguya spp. were measured from photomicrographs of 25 

myxospores. 
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6.3.3 Molecular characterization of myxospores 

Genomic DNA was isolated from myxospores using the DNeasy Blood and 

Tissue kit (QIAGEN, Hilden, Germany).  The 18S small subunit rRNA gene was 

amplified using combinations of myxozoan sequencing primers used in previous studies 

(Hanson et al. 2001; Fiala 2006; Griffin et al. 2008; Rosser et al. 2015), but following the 

methods of Rosser et al. (2015).  Amplification products were electrophoresed through 

1.2% agarose gels in the presence of ethidium bromide (0.5 µg/ml) and viewed under 

ultraviolet light.  All amplicons were compared to a concurrently run molecular weight 

ladder (HyperLadder™ 50bp, Bioline, London, United Kingdom) to confirm the presence 

of appropriate sized bands. Amplicons were excised from the agarose and purified using 

the QIAquick Gel Extraction Kit (QIAGEN Inc., Valencia, California).  Purified products 

were sequenced commercially (Eurofins MWG Operon LLC, Huntsville, Alabama, USA) 

and sequences were edited and aligned in SeqMan™ (DNAStar, Madison, Wisconsin).  

The contiguous sequence was used in a Blastn search of the NCBI nr/nt database 

(Altschul et al. 1990) to identify somewhat similar sequences. 

6.4 Results 

6.4.1 Morphological description of Henneguya exilis myxospores 

The myxospores in this current study were morphologically consistent with 

characters from the original descriptions of H. exilis by Kudo (1929) and a later 

description by Minchew (1977), with the exception that caudal processes were shorter 

than previously documented, Table 6.1 (Figure 6.2).  Conventionally, morphology has 

been used to describe myxozoans species, although evidence has suggested 

morphological descriptions are limited as a stand-alone method of classification.  In cases 
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where phenotypic characters are subjective, especially where morphologically ambiguous 

species occupy the same host niche, molecular confirmation provides a more accurate 

identification (Hallett et al. 2002, 2004; Eszterbauer et al. 2006; Atkinson and 

Bartholomew 2009; Urawa et al. 2011). 

Table 6.1 Morphologic comparison of Henneguya exilis myxospores. 

 Henneguya exilis 
Reference This study Kudo 1929 Minchew 1977 
Host Ictalurus punctatus Ictalurus punctatus Ictalurus punctatus 
Locality Mississippi, USA Illinois, USA Mississippi, USA 
Total spore    
Length 51.5±3.5 (44.4–61.1) (60.0–70.0) 69.9 (60.0–90.0) 
Spore body    
Length 18.5±1.1 (16.4–20.7) (18.0–20.0) 17.6 (16.0–19.0) 
Width 4.3±0.4 (3.8–5.4) (4.0–5.0) 4.9 (4.0–5.0) 
Polar 
capsule    
Length 6.7±0.4 (6.1–7.5) (8.0–9.0); 6.7 (6.0–8.0) 8.5 (7.0–9.0) 
Width 1.5±0.1 (1.3–1.7) (1.0–1.5) (1.5–2.0) 
Caudal 
process    
Length 34.0 ±2.8 (27.2–38.6) 34.6 (25.0–47.0) 52.3 (41.0–73.0) 

All values are reported in micrometers. 
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Figure 6.2 Photomicrograph of a representative ethanol-fixed Henneguya exilis 
myxospore. 

Wet mount. Scale bar = 20 µm.. 

6.4.2 Molecular characterization of H. exilis myxospores 

The 1959-bp contiguous sequence was a 100% match to H. exilis (AF021881; 

Hanson et al. 2001) suggesting the gill infecting myxospores of H. exilis and the tail fin 

myxospores reported in this study are conspecific. While reports of H. exilis parasitizing 
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the fins of channel catfish exist, there are no morphologic, histologic, or molecular data 

confirming these accounts (Meglitsch 1937). 

6.4.3 Histological description of the H. exilis lesions 

Histologically the papillomatous forms were characterized by hyperplasia of the 

squamous epithelium and goblet cells (McCraren et al. 1975).  Histopathological 

examination of the affected fish in this case revealed that the epidermis in the affected 

area had been completely replaced by layers of pseudocysts of varying sizes (~ 25-200 

µm in diameter) containing myxospores of different stages of maturation (Figure 6.3).  It 

was very difficult to discern any normal epidermal tissue within this sea of pseudocysts.  

In some areas, the pseudocysts even extended past the dermis and were present in the 

fascial planes separating the muscle bundles (Figure 6.4).  The pseudocysts were 

sometimes present in the tissue between the bony elements of the lepidotrichia (Figure 

6.5).  The inflammatory response within the affected area was relatively mild and only a 

few inflammatory cells presents between the pseudocysts particularly in areas that were 

ulcerated. 
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Figure 6.3 Cross section through the body of the fish showing the effacement of the 
epidermis by the layers of pseudocysts. 

Giemsa stain (bar ~1000 µm). Box A and B represent areas highlighted in Figures 6.4 
and 6.5. 
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Figure 6.4 Higher magnification of the area in box A in Figure 6.3 showing the 
presence of the pseudocysts within the fascial plane separating the muscle 
bundles. 

Note the mature spores within the pseudocyst (arrows). Giemsa stain (bar ~50 µm). 
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Figure 6.5 Higher magnification of the area in box B in Figure 6.3 revealing the 
presence of the pseudocysts. 

Pseudocysts between the bony elements of the lepidotrichia (arrow points to pseudocyst 
with several mature spores). Giemsa stain (bar ~100 µm). 

6.5 Discussion 

Dermal infections of H. exilis have been reported from the channel catfish (Kudo 

1929; Meglitsch 1937).  McCraren et al. (1975) described seven different forms of 

Henneguya sp. infections in the channel catfish based on morphology and histopathology.  

Two cutaneous forms were described:  papillomatous and cutaneous cysts.  The 

papillomatous forms are tumor-like and appear on the fins and occasionally the caudal 

peduncle of cultured channel catfish with lesions measuring up to 1 cm in diameter.  
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Some lesions are reported to have completely covered the dorsal fin (McCraren et al. 

1975).  In comparison to the case described here, tumor-like growths occur on the caudal 

peduncle.  Though these forms are likely H. exilis, no molecular or morphologic data of 

spores were recorded for these forms to confirm this. 

Historical accounts of H. exilis have described the parasite as having affinity for 

gill tissue, but reports also exist of Henneguya species morphologically identified as H. 

exilis from the skin of catfish (Kudo 1929; Meglitsch 1937; Minchew 1977).  However, 

many of these reports lack confirmation of species by molecular techniques and evidence 

suggests that morphology alone can be ambiguous especially when multiple closely 

related and morphologically indistinguishable myxozoan species parasitize the same host 

and tissue site (Eszterbauer 2002, 2004).  The mechanisms that affect tissue tropism 

among myxozoans have yet to be clarified and it is unsure if multiple species occupying 

the same tissue site influence the spread of a species to other ectopic or aberrant 

locations. This represents the first molecularly confirmed account of H. exilis developing 

as mature myxospores in a second tissue site, the skin. 
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CHAPTER VII 

MYXOBOLUS ICTIOBUS N. SP. AND MYXOBOLUS MINUTUS N. SP. (CNIDARIA:  

MYXOBOLIDAE) FROM THE GILLS OF SMALLMOUTH BUFFALO ICTIOBUS 

BUBALUS (CYPRINIFORMES:  CATOSTOMIDAE) POLYCULTURED IN 

COMMERCIAL CATFISH PONDS 

7.1 Abstract 

The smallmouth buffalo Ictiobus bubalus Rafinesque (Catostomidae) is native to 

North American waterways and occasionally grown in pond aquaculture. Species of 

Myxobolus Bütschli, 1882 have been reported from the gills, integument, and intestinal 

tract of buffalo fish, although there is ambiguity in some host records.  In the summer of 

2013, thirteen adult smallmouth buffalo were seined from a 0.1-acre (0.04-hectare) 

experimental research pond at the Thad Cochran National Warmwater Aquaculture 

Center in Stoneville, Mississippi, USA. Smallmouth buffalo were examined for the 

presence of parasitic infection.  Two previously unknown Myxobolus species were 

observed parasitizing the gills.  Plasmodia of the two species differed from each other in 

both size and shape.  Morphologically the two species were distinct from one another and 

from other Myxobolus spp. previously reported from buffalo fish.  Myxospores of 

Myxobolus ictiobus n. sp. were spherical and measured 12.7–14.5 (13.9±0.4) µm in 

length and 10.7–13.6 (12.5±0.7) µm in width with a thickness of 10.3–14.8 (12.6±2.3) 

µm.  Polar capsules measured 5.6–7.4 (6.6±0.4) µm in length and 3.7–4.9 (4.5±0.8) µm 
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in width and each contained a coiled polar filament with 5–6 turns.  Myxobolus minutus 

n. sp. myxospores were circular in shape and measured 7.4–9.6 (8.6±0.7) µm in length 

and 7.5–9.9 (8.8±0.7) µm in width with a thickness of 6.5–7.3 (6.7±0.3) µm.  Polar 

capsules measured 3.6–4.9 (4.3±0.3) µm in length and 2.8–3.8 (3.3±0.3) µm and each 

contained a coiled polar filament with 5–6 turns.  Supplemental 18S rRNA gene 

sequencing identified unique sequences for each isolate.  Phylogenetic analysis of 18S 

rRNA sequence demonstrated a strong clustering of both isolates with other species of 

Myxobolus from Cypriniform fish. 

7.2 Introduction 

Species of the genus Myxobolus Bütschli, 1882 are cosmopolitan metazoan 

parasites of freshwater and marine fish.  With > 900 members, the genus has the most 

described species of all known myxozoans (Eiras et al. 2014).  Many are described only 

by morphological characters, which alone can be ambiguous and subjective, especially if 

multiple species display similar tissue tropism or a single species occurs in multiple hosts 

(Eszterbauer 2002; Ferguson et al. 2008; Griffin et al. 2014).  Currently, novel species are 

described using a combination of morphological characterization supplemented with 

sequencing of the small subunit ribosomal RNA gene. 

Smallmouth buffalo Ictiobus bubalus Raffinesque (Catostomidae) is native to 

North America, inhabiting the waterways of the Mississippi River drainage system and 

other water bodies within this range.  Myxozoans have been reported from buffalo fish 

(Ictiobus spp.) in North America, although all reports are from wild-caught fish.  

Recently researchers attempted to employ the benthivorous capacity of smallmouth 

buffalo as biological control of proliferative gill disease (PGD) in farm-raised catfish 
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(Mischke et al. 2016).  It is speculated that opportunistic foraging on the benthos in 

catfish aquaculture ponds would result in a reduction of Dero digitata Müller, the 

oligochaete host of Henneguya ictaluri Pote, Hanson, and Shivaji, 2000, the causative 

agent of PGD in channel and hybrid catfish (Bosworth et al. 2003; Griffin et al. 2010). 

A subsample of harvested smallmouth buffalo that had been raised in polyculture 

with channel catfish as part of a biological control study, were screened to determine if 

smallmouth buffalo carried parasites that could infect channel catfish. Two previously 

uncharacterized species of Myxobolus were identified.  Herein we describe Myxobolus 

ictiobus n. sp. and Myxobolus minutus n. sp. from the gills of smallmouth buffalo raised 

in polyculture with channel catfish in experimental research ponds. 

7.3 Materials and methods 

7.3.1 Myxospore isolation and morphologic characterization 

Thirteen smallmouth buffalo, seined from 0.1-acre channel catfish research ponds 

at the Thad Cochran National Warmwater Aquaculture Center in the spring of 2013, were 

necropsied and examined for internal and external parasites.  Wet mounts of gill tissues 

were taken, revealing the presence of myxozoan pseudocysts.  Gill arches were removed 

and preserved in 70% molecular biology grade ethanol for further analysis. 

Pseudocysts were excised by sharp dissection and placed onto clean glass 

microscope slides, diluted with saline, and covered with a coverslip.  Photomicrographs 

of ethanol fixed myxospores were obtained using an Olympus BX-50 microscope 

(Olympus Optical Co. Ltd., Tokyo, Japan) with an Olympus DP72 camera and the DP-2-

Twain/cellSens software package (Olympus Optical Co. Ltd., Tokyo, Japan).  

Measurements of myxospores were obtained from digital images and line drawings were 
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made from photomicrographs with the aid of a camera lucida.  Comparisons of these 

isolates were made to other Myxobolus spp. parasitising the gills of buffalo fish and 

catostomid fish.  It is important to note that measurements of these isolates, while 

averaged from multiple spores, may be lower than those of fresh spores due to shrinkage 

associated with ethanol fixation (Kudo 1921; Parker and Warner 1970).  However, these 

isolates are supplemented with molecular sequence data that would allow for more 

accurate identification moving forward. All measurements are in micrometres unless 

otherwise indicated and are given in the text and tables as the range followed by the mean 

and standard deviation in parentheses. Measurements are from 30 myxospores preserved 

in 70% ethanol. 

7.3.2 Myxospore DNA extraction and molecular characterization 

Myxospores were rinsed from microscope slides into 1.5 ml microcentrifuge 

tubes and centrifuged at 10,000 x g for 10 minutes. The supernatant was removed and 

genomic DNA (gDNA) was extracted using the DNeasy Blood and Tissue Kit (Qiagen 

Inc., Valencia, California).  All gDNA was stored at -20°C until further use. 

The 18S rRNA gene was amplified using previously published primers (Table 

7.1).  Each 25-µl PCR reaction contained 22 µl of Platinum Taq Supermix (Invitrogen, 

Carlsbad, California), 10 pmol of each primer, and 1 µl of gDNA.  Primers were paired 

as follows to generate overlapping sequences:  ERIB1/ACT1R, H9/ERIB10, 

Myxo1F/Myxgen3R, H2/H9, MyxospecF/MyxospecR.  The thermal cycling program 

consisted of 95°C for 10 minutes, 35 cycles of 95°C for 1 min, 52°C for 1 min, 72°C for 

2 min, and a final extension step at 72° C for 10 min.  Amplification of the 18S rRNA 

gene was performed using an MJ Research PTC-200 thermocycler (GMI, Ramsey, 
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Minnesota).  All amplicons were imaged in 1.2% agarose gels stained with ethidium 

bromide (0.5 µg/ml) under UV light alongside a concurrently run molecular weight DNA 

marker (HyperLadder™ 50 bp, Bioline, London, U.K.).  Appropriately sized products 

were either purified directly using the QIAquick PCR Purification Kit (Qiagen Inc., 

Valencia, California) or bands were gel excised and purified using the QIAquick Gel 

Extraction Kit (Qiagen Inc., Valencia, California).  Purified amplicons were sequenced 

commercially using the corresponding primers (Eurofins MWG Operon LLC, Huntsville, 

Alabama).  Sequencing reads were edited and aligned using SeqMan™ (DNAStar, 

Madison, Wisconsin).  A single contiguous sequence was obtained for each species and 

compared to other myxozoan sequences in the National Center for Biotechnology 

Information non-redundant nucleotide database using a BLASTn search (Altschul et al. 

1990). 

Table 7.1 Primers used in the amplification of the 18S rRNA gene of Myxobolus 
ictiobus n. sp. and Myxobolus minutus n. sp. 

Primer ID Sequence (5’-3’) Reference 
ACT1R AATTTCACCTCTCGCTGCCA Hallett & Diamant 2001 
ERIB1 ACCTGGTTGATCCTGCCAG Barta et al. 1997 
ERIB10 CCTCCGCAGGTTCACCTACGG Barta et al. 1997 
Genmyxo4 GGATGTTGGTTCCGTATTGG Griffin et al. 2008 
H2 CGACTTTTACTTCCTCGAAATTGC Hanson et al. 2001 
H9 TTACCTGGTCCGGACATCAA Hanson et al. 2001 
Myxo1F CTGCCCTATCAACTWGTT Kent et al. 2000 
Myxogen3R TGCCTTCGCATTYGTTAGTCC Kent et al. 2000 
MyxospecF TTCTGCCCTATCAACTWGTTG Fiala 2006 
MyxospecR GGTTTCNCDGRGGGMCCAAC Fiala 2006 

 

The 18S rRNA gene sequences for each species were analyzed against other 

published myxozoan sequences available in the NCBI database.  Published myxozoan 

sequences > 1,500 nt were downloaded and used in phylogenetic analysis performed in 
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Molecular Evolutionary Genetic Analysis 6.0 (MEGA6) (Tamura et al. 2013).  Sequences 

were aligned with ClustalW.  Using the Akaike Information Criterion the model of best 

fit was TN93+G+I (Nei & Kumar, 2000).  Phylogenetic placement was inferred with the 

maximum likelihood method using the Tamura-Nei model (Tamura and Nei 1993) with 

1,000 bootstraps. 

7.4 Results 

Myxospores typical of the genus Myxobolus were observed on gill wet mounts of 

3 out of 13 (23.1%) smallmouth buffalos examined.  These were further differentiated 

morphologically and molecularly as two previously undescribed species of Myxobolus. 

7.4.1 Taxonomic summary 

Species:  Myxobolus ictiobus n. sp. (Cnidaria:  Myxosporea:  Myxobolidae) 

Type host:  Ictiobus bubalus (Rafinesque, 1818) (Cypriniformes:  Catostomidae) 

Type locality:  catfish aquaculture pond, Washington County, Mississippi, USA  

Site of infection:  gill filaments 

Prevalence:  2/13 fish; 15.38% 

Materials deposited:  18S rRNA gene sequence, accession number KU232371 National 

Center for Biotechnology Information 

Etymology:  The specific epithet is in reference to the host genus Ictiobus. 

7.4.2 Remarks 

Pseudocyst, round, 148 in length and 122 in width and intralamellar.  Myxospore, 

spherical, 12.7–14.5 (13.9±0.4) in length, 10.7–13.6 (12.5±0.7) in width and 10.3–14.8 

(12.6±2.3) thick.  Polar capsules 2, pyriform, 5.6–7.4 (6.6±0.4) in length, 3.7–4.9 
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(4.5±0.8) in width, each containing a coiled polar filament with 5–6 coils (Figures 7.1A, 

7.1C and 7.2A). 

 

Figure 7.1 Photomicrographs of myxospores of Myxobolus ictiobus n. sp. and 
Myxobolus minutus n. sp. 

Valvular view of Myxobolus ictiobus n. sp. (a) and Myxobolus minutus n. sp. (b).  Sutural 
view of myxospores of Myxobolus ictiobus n. sp. (c) and Myxobolus minutus n. sp. (d).  
Scale bar 10 µm. 
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Figure 7.2 Line drawings of myxospores of Myxobolus ictiobus n. sp. (a) and 
Myxobolus minutus n. sp. (b). 

Scale bar 10 µm. 

When compared to other Myxobolus spp. from buffalo fish, M. ictiobus n. sp. 

shared several features overlapping with previously identified Myxobolus species from 

the gills of smallmouth buffalo from other localities, but differed greatly in several 

measured features suggesting this is a uniquely described species.  The most marked 

variation occurred with spore thickness observed in sutural view (Figure 7.1 C).  

Myxobolus ictiobus n. sp. was much thicker (12.6 µm) compared to the other species 

reported from Ictiobus spp. (<11.0 µm; Table 7.2).  Also, pseudocysts of M. ictiobus n. 

sp. were smaller (148 x 122 µm) compared to the other species of Myxobolus reported 

from buffalo fish.  Although similar to Myxobolus bibullatus Kudo, 1934 from the 

integument and the gills of white sucker Catostomus commersoni Lacépède in Nova 

Scotia, polar capsules were smaller than those of M. ictiobus (see Kudo, 1934). 
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The 1,713 nt long 18S rRNA gene sequence of Myxobolus ictiobus n. sp. shared a 

95.1% (1,626/1,710 nt) sequence identity (99% coverage) with a triactinomyxon type 

actinospore from Limnodrilus hoffmeisteri Claparède from Oregon, USA (AY997026, 

unpublished sequence), 88.6% (98% coverage) with M. bibullatus from C. commersoni in 

Canada (AF378336; Kent et al. 2001), 85.1% (99% coverage) and 84.9% (99% coverage) 

with an antonactinomyxon type (AF378355) and a synactinomyxon type (AF378354) 

actinospore from Limnodrilus hoffmeisteri from Canada, respectively (see Kent et al. 

2001). 

7.4.3 Taxonomic summary 

Species:  Myxobolus minutus n. sp. (Cnidaria:  Myxosporea:  Myxobolidae) 

Type host:  Ictiobus bubalus (Rafinesque, 1818) (Cypriniformes:  Catostomidae) 

Type locality:  catfish aquaculture pond, Washington County, Mississippi, USA 

Site of infection:  gill filaments 

Prevalence:  1/13 fish; 7.69% 

Materials deposited:  18S rRNA gene sequence, Accession number KU232372 National 

Center for Biotechnology Information 

Etymology:  The specific epithet is in reference to the small size of the myxospores. 

7.4.4 Remarks 

Pseudocyst, elongate, approximately 1.3 mm in length and 0.4 mm in width along 

the edge of the primary lamellae.  Myxospore, ovoid, 7.4–9.6 (8.6±0.7) in length, 7.5–9.9 

(8.8±0.7) in width, and 6.5–7.3 (6.7±0.3) thick.  Pyriform polar capsules, 2, 3.6–4.9 
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(4.3±0.3) in length and (2.8–3.8) (3.3±0.3) in width, and each containing a coiled polar 

filament with 5–6 coils when visible. 

Morphologically M. minutus n. sp. shared similar features with other species of 

Myxobolus from buffalo fish (Table 2).  The pseudocyst dimensions of M. minutus n. sp. 

(1.3  0.4 mm) are similar to Myxobolus enoblei Lom & Cone, 1996 (1.5  0.3 mm) and 

Myxobolus morrisonae Lom & Cone, 1996 (1.5  0.3 mm). However the myxospores 

vary considerably from these species and are greatly reduced in size (8.6  8.8 µm) 

compared with the other species of Myxobolus described from catostomid fish from 

North America.  Myxobolus minutus n. sp. differs notably from the morphologically 

similar M. morrisonae when comparing the thickness of the myxospores in sutural view 

and the overall shape of the myxospores.  Myxospores of Myxobolus minutus n. sp. were 

considerably thicker on average than those of M. morrisonae (6.7 vs 5.0).  The 

myxospores of M. minutus were more ovoid as well. The minute size and greater 

thickness of myxospores of M. minutus n. sp. suggests this is also a unique species. 

The 1,970 nt long 18S rRNA gene sequence of Myxobolus minutus n. sp. shared a 

91.5% (1,810/1,979 nt) sequence identity (99% coverage) with Myxobolus bibullatus 

from the cyprinid C. commersoni from Canada (AF378336; Kent et al. 2001), 88.5% 

(99% coverage) with a triactinomyxon type actinospore from L. hoffmeisteri from 

Oregon, USA (AY997026, unpublished sequence), 85.8% (97% coverage) and 85.4% 

(97% coverage) with a synactinomyxon type (AF378354) and an antonactinomyxon type 

(AF378355) actinospore from L. hoffmeisteri from Canada, respectively (Kent et al. 

2001). 
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Phylogenetic analysis positioned both M. ictiobus n. sp. and M. minutus n. sp. 

sister to M. bibullatus from the gills of the white sucker C. commersoni in Canada (Kent 

et al. 2001) with high bootstrap support (Figure 7.3).  Myxobolus ictiobus n. sp. was also 

sister to an unidentified myxozoan triactinomyxon type actinospore from the oligochaete 

L. hoffmeisteri (see Kent et al. 2001). 

 

Figure 7.3 Maximum likelihood tree containing Myxobolus ictiobus n. sp. and 
Myxobolus minutus n. sp. (bolded) and closely related myxozoans and 
those parasitizing ictalurid fish from North America. 

Values at the nodes represent bootstrap confidence values based on 1,000 replicates. (*) 
Indicates sequence from an annelid actinospore stage not yet identified as a myxospore 
stage in a fish host. 
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7.5 Discussion 

Myxobolus is the most species-rich genus of myxozoan parasites to date.  Davis 

(1923) first reported Myxobolus sp. from the gills of smallmouth buffalo and largemouth 

buffalo Ictiobus cyprinellus Valenciennes in Iowa, USA, and described the differing 

stages of development and sporulation of a gill infecting myxosporean, Myxobolus ovalis 

Davis, 1923 (syn. Lentospora ovalis).  Following Davis, Kudo (1934) described 

Myxobolus ovatus Kudo, 1934 from the integument of a smallmouth buffalo during a 

survey of myxozoan species of freshwater fish of Illinois.  Otto and Jahn (1943) 

described spherical plasmodia of Myxobolus bubalis Otto and Jahn, 1943 in the intestinal 

tract of I. bubalus in Iowa, while Rice and Jahn (1943) reported Myxobolus multiplicatum 

Kudo, 1933 from the gill filaments and arches of I. bubalus in lakes of Iowa.  The authors 

acknowledged this as a new host and geographical record for this species and discussed 

discrepancies between their measurements and with those originally reported from ide 

Leuciscus idus Linnaeus, from the Volga, Russia (Reuss 1906).  Similarly, Rice and Jahn 

(1943) also reported Myxobolus transovalis Gurley, 1893, a myxobolid originally 

described from beneath the scales of rosyside dace Clinostomus funduloides Girard, from 

a tributary of the Potomac River in Virginia (Gurley 1893).  

Grinham and Cone (1990) described several new myxozoan species from the 

white sucker C. commersoni from Nova Scotia and provided a thorough review of the 

literature concerning species of Myxobolus parasitizing catostomid fishes.  They 

considered the smallmouth buffalo to have seven valid species, including M. 

multiplicatum and M. transovalis (see Grinham and Cone 1990).  Lom and Cone (1996) 

later reported three new species of myxozoan from I. bubalus in Illinois; however, the 
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authors consistently used the common name of bigmouth buffalo when reporting these 

species, rather than smallmouth buffalo, which is the appropriate common name of I. 

bubalus (Page et al. 2013). 

Two previously unidentified species of Myxobolus from the gills of smallmouth 

buffalo from catfish production ponds in Mississippi are described herein using 

morphological and molecular techniques.  These two species were morphologically 

distinct from all reported species from Ictiobus spp.  In recent years, molecular 

techniques, largely sequencing of the 18S rRNA gene, have exposed the limitations of 

using phenotypic characters alone to describe novel species of myxozoans, especially 

when a species has been reported to have a wide host range (Eszterbauer 2004; Molnár et 

al. 2009).  The historical records of myxozoans from buffalo fish are from before the 

advent of molecular techniques; therefore molecular comparisons could not be made with 

these species. Phylogenetic analysis clusters M. ictiobus n. sp. and M. minutus n. sp. with 

other species of Myxobolus reported from cyprinid fish (Figure 7.3) and is in agreement 

with previous reports of species of Myxobolus and Henneguya Thélohan, 1892 group 

according to host order and family (Carriero et al. 2013). 

Currently the life histories of these two species are unknown, but it is speculated 

they involve an annelid definitive host endemic to catfish production ponds.  Most 

myxospores take less than six months to develop in the fish host (Székely et al. 2001; 

Kallert et al. 2005; Székely et al. 2009).  Given the time the smallmouth buffalo were in 

the pond (12–18 months), the presence of mature myxospores in the gills suggests the 

invertebrate host required to complete these life-cycles was present in the culture system.  

It is unknown whether these parasites were introduced into the system with the 
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smallmouth buffalo or if they were already present in the pond and cycling through other 

non-catfish hosts. Since myxozoan species usually parasitize closely related fish hosts, it 

is unlikely these parasites of cypriniform fish would infect pond-raised catfish and to date 

morphologically or molecularly similar species have not been reported from Siluriformes.  

In addition to the morphological descriptions, the 18S rRNA gene sequencing data 

obtained for both species will be useful in elucidating the life-cycles of M. ictiobus n. sp. 

and M. minutus n. sp. once the corresponding actinospore stage is characterized from an 

annelid host. 
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CHAPTER VIII 

INVESTIGATIONS INTO THE DEVELOPMENT OF HENNEGUYA ICTALURI 

(CNIDARIA: MYXOBOLIDAE) IN CHANNEL CATFISH ICTALURUS-  

PUNCTATUS, BLUE CATFISH ICTALURUS FURCATUS,  

AND THEIR HYBRID CROSS 

8.1 Abstract 

Henneguya ictaluri is the etiologic agent of proliferative gill disease (PGD) in 

farm raised channel and hybrid catfish in the southeastern United States.  The most 

prevalent parasitic disease in catfish aquaculture, PGD is attributed to significant yearly 

losses.  Recent research has suggested the dynamics of H. ictaluri infection in blue 

catfish and channel catfish (♀) x blue catfish (♂) hybrids differs from channel catfish.  

Two separate experimental infectivity trials were carried out to investigate the 

development of H. ictaluri in channel catfish, blue catfish, and their hybrid cross.  On 

two separate occasions using two different year classes of fish, fish were exposed to 

infectious pond water containing H. ictaluri actinospores and sampled weekly, for twelve 

weeks in Trial 1 and fourteen weeks in Trial 2.  In Trial 1, the presence of H. ictaluri was 

evaluated histologically and by quantitative polymerase chain reaction (qPCR) on a 

complement of tissues, including gills, blood, anterior kidney, brain, heart, liver, posterior 

kidney, spleen, and stomach.  Trial 1 demonstrated H. ictaluri DNA in significantly 

higher concentrations throughout multiple organ systems in the channel catfish compared 
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to hybrid catfish and blue catfish, with the gills having the highest levels of H. ictaluri 

DNA and being the site of pseudocyst development.  Mature Henneguya spp. 

myxospores were observed in channel catfish as early as 8 weeks post-exposure.  No 

mature myxospores were observed in either blue or hybrid catfish at any period during 

Trial 1.  The second experimental trial focused on gills only and yielded results similar to 

Trial 1, with channel catfish having higher levels of H. ictaluri DNA across all time 

points.  Again, mature Henneguya spp. myxospores were observed histologically in 

channel catfish beginning 6 weeks post-exposure, and were found in 36% (58/162) of 

channel catfish sampled from Week 6 through Week 14.  Comparatively, myxospores 

and H. ictaluri DNA in hybrid catfish were sparse, with single myxozoan pseudocysts 

observed in only two hybrid catfish over the same span (1.2%), both at 14 weeks post-

exposure.  While this may suggest hybrid catfish are not completely refractory to H. 

ictaluri infection, these results imply significant arrested development of H. ictaluri in 

hybrid catfish.  As such, propagation and culture of hybrid catfish may be an effective 

management strategy to minimize the burden of PGD on catfish aquaculture in the 

southeastern United States.  Field studies investigating the impacts of these findings on a 

commercial scale are warranted. 

8.2 Introduction 

In the United States, the culture of ictalurid catfish is considered the largest 

component of the nation’s aquaculture industry, with >50,000 water surface acres 

dedicated to production, yielding ~$352 million in total sales in 2014 (Hansen and Sites 

2015) in spite of a significant industry contraction since its peak in 2003.  Rising feed 

costs, increased competition from imported nonnative catfish species (e.g. Pangasius spp. 
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and Pangasianodon spp.) and more profitable land use alternatives threaten industry 

stability.  Traditionally, production in the southeastern United States has focused on 

raising channel catfish Ictalurus punctatus, however there is continued interest in the 

channel catfish (♀) x blue catfish (♂) hybrid (hereafter hybrid catfish) (Dunham and 

Masser 2012).  In addition to the hybrids superior production characteristics, inherent 

resistance to certain infectious diseases problematic for channel catfish culture has been 

reported and warrants further investigation (Wolters et al. 1996; Bosworth et al. 2003; 

Griffin et al. 2010; Brown et al. 2011; Dunham and Masser 2012).   

Losses attributed to infectious disease accounts for nearly half of all losses in 

catfish aquaculture (Hawke and Khoo 2004).  Farm-raised channel catfish Ictalurus 

punctatus have persistently been plagued by the myxozoan Henneguya ictaluri, the 

causative agent of proliferative gill disease (Bowser and Conroy 1985; Pote et al. 2000; 

Pote et al. 2012).  The complex life cycle of H. ictaluri is perpetuated by actinospore 

stages released by the ubiquitous benthic oligochaete definitive host Dero digitata and 

myxospore stages in the gill tissue of the channel catfish (Pote et al. 2000), consistent 

with other myxozoans (Wolf and Markiw 1984; Kent et al. 2001).  Seasonal outbreaks in 

the spring have been attributed to increased populations of D. digitata actively shedding 

infectious actinospore stages (Bellerud et al. 1995; Mischke et al. 2016). Unlike other 

myxozoan diseases of cultured and wild fish populations, clinical manifestation of PGD 

is associated with the initial penetration and proliferation of the parasite rather than 

mature myxospore stages (Wise et al. 2008).   

Host specificity appears to play a significant role in H. ictaluri transmission.  

When exposed to pond water containing H. ictaluri actinospores, blue catfish 
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demonstrate significantly less gill damage than their channel and hybrid counterparts, 

with no observed developmental stages and limited detection of parasite DNA in gills and 

blood (Bosworth et al. 2003; Griffin et al. 2010).  While hybrid catfish exposed under 

similar conditions suffer gill damage on par with channel catfish, H. ictaluri DNA in gill 

tissues was significantly lower during early stages of disease (1 week post-exposure), 

suggesting less efficient transmission and proliferation of the parasite in hybrid catfish 

(Griffin et al. 2010).  In this current study, the period from initial infection to myxospore 

maturation was evaluated using a polyphasic approach, combining molecular and 

histological techniques.  Herein we report the results of two separate infectivity trials 

covering the entire developmental period of H ictaluri in channel catfish to document the 

development of H. ictaluri in blue catfish and hybrid catfish and evaluate their putative 

role in the propagation of H. ictaluri in catfish production systems. 

8.3 Materials and methods 

8.3.1 Fish exposures 

Two separate year classes (2010 and 2014) of channel, blue and hybrid catfish 

fingerlings (7-13 cm) were used in these studies.  Fish were reared indoors for disease 

research at the Thad Cochran National Warmwater Aquaculture Center in Stoneville, 

MS.  Prior to the infectivity trials, fish were housed in 1000 L circular tanks in 500 L of 

flow-through well water (~26-27ºC) supplied at a rate of 3.8 L/min with constant 

aeration.   

Two separate infectivity trials were performed to assess the development of H. 

ictaluri in channel catfish, blue catfish and hybrid catfish.  In line with previous studies, 

infectious water (pond water containing actinospores) collected from ponds harboring 
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active PGD outbreaks in the resident fish population were used for disease challenges 

(Wise et al. 2008).  The presence of H. ictaluri in pond water was verified by H. ictaluri-

specific qPCR (Griffin et al. 2009) and infectious pond water was transported to the Thad 

Cochran National Warmwater Aquaculture Center in Stoneville, MS in a 2000-L live 

hauler.  Fish for all trials were stocked into 115-L flow-through aquaria, holding ~35 

liters of well water (~27ºC) supplied at a flow rate of 1.9 L per minute together with 

supplemental aeration.  During fish exposure, water flow was suspended, the water level 

was lowered to approximately ~30 L, and aquaria were filled with freshly collected pond 

water to near full capacity (~115 L).  Fish were held in infectious pond water for 4 hours, 

after which the flow of well water was resumed. Exposures were repeated every day for 4 

consecutive days. 

In Trial 1 (Spring 2011), triplicate groups of 45 channel, blue, and hybrid catfish 

were placed in discrete 115-L aquaria were exposed to infectious pond water containing 

H. ictaluri actinospores as described above. Three additional aquaria for each fish group 

were maintained similarly, but were not exposed to infectious pond water. Actinospore 

levels were determined using by qPCR assay Griffin et al. (2009) of averaging three 

separate 500 ml water samples collected from the infectious pond water in the live hauler.  

In trial one, the qPCR estimated infectious dose was 25–100 (4-day average=~80) spores 

per liter over the course of the four-day exposure period. 

This procedure was repeated in Trial 2 (Spring 2015), using sextuplicate groups 

of 50 channel, blue and hybrid catfish housed in 115-L aquaria, respectively.  Fish were 

exposed to infectious pond water containing H. ictaluri actinospores as described 
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previously.  The qPCR estimated infectious dose for Trial 2 was 10–25 (4-day 

average=~20) spores per liter over the four-day exposure. 

8.3.2 Fish necropsies, tissue collection and histology 

During Trial 1, fish were maintained up to 12 weeks post exposure.  Three fish 

were sampled weekly from each aquarium for Weeks 1–4 and Weeks 8–12. Due to subtle 

fish losses throughout the trial, fish sampling was forgone for Weeks 5–7 in an effort to 

ensure enough fish remained until maturation of pseudocysts (~90 days post exposure, 

Pote et al. 2000). Fish were euthanized with an overdose of tricaine methanesulfonate, 

MS-222 (Tricaine-S®, Western Chemical Inc., Ferndale, Washington). Of the three fish 

sampled, two were necropsied and organs were aseptically collected for molecular 

analysis.  The remaining fish was opened ventrally by sharp dissection, the opercula were 

removed and the entire fish was fixed in 10% neutral buffered formalin for 

histopathologic evaluation. Approximately 100 µl of blood was collected from the caudal 

vein into 1.5-ml microcentrifuge tubes.  From the necropsied fish, approximately 100 mg 

each of anterior kidney, brain, gill, heart, liver, posterior kidney, spleen, and stomach 

tissue were collected into 1.5-ml microcentrifuge tubes. All tissues were frozen at -80ºC 

until further processing. Presence of PGD lesions and developing myxospores were 

assessed by examining gill clip wet mounts of ~40-80 filaments taken from the right gill 

arch according to the lesion scoring system established by Wise et al. (2008). 

During Trial 2, for Week 1–Week 4, two fish were sampled from each aquarium. 

One fish was processed as described above for molecular analysis and the other was fixed 

in 10% neutral buffered formalin for histopathologic evaluation. Starting at Week 5 and 

continuing until the end of the study at Week 14, three fish were sampled from each 
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aquarium. Two of these were fixed in 10% neutral buffered formalin and the remaining 

fish were processed for molecular analysis. Based on results of Trial 1, only gill tissues 

were analyzed in Trial 2.  Again, PGD severity and myxospore development was 

assessed from fresh gill wet mounts according to Wise et al. (2008). 

Tissues fixed in 10% neutral buffered formalin were trimmed routinely and 

processed by dehydration through a graded series of ethanol solutions, cleared in xylene, 

embedded in paraffin blocks and sectioned at 5 µm. Slides were stained with hematoxylin 

and eosin or Giemsa. Photomicrographs were captured using a BX-50 Olympus 

microscope (Olympus Optical Co., Ltd., Tokyo, Japan) with an Olympus DP72 camera 

and the corresponding DP-2-Twain/cellSens software (Olympus Optical Co., Ltd.). 

8.3.3 Genomic DNA extraction from catfish tissues 

Total genomic DNA (gDNA) was extracted from catfish tissues collected during 

the infectivity trials. Briefly, 600 µl of Cell Lysis Solution (Gentra® Puregene®, 

QIAGEN, Valencia, California) and 3 µl of proteinase K (20 mg/ml) was added to 

thawed tissues prior to overnight incubation at 55ºC. Isolation of gDNA then progressed 

according to the manufacturer’s suggested protocol.  Isolated gDNA was suspended in 

200 µl of DNA Hydration Solution (DHS; 10 mM Tris, 1 mM EDTA, pH 7-8; Gentra® 

Puregene®, QIAGEN) and stored at -20ºC until further processing. 

Blood was thawed at room temperature before gDNA was extracted following the 

Gentra® Puregene® Blood DNA kit (QIAGEN) manufacturer’s suggested protocol. 

Extracted gDNA from blood was suspended in 100 µl of DHS and stored at -20ºC until 

further use.  
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8.3.4 Quantitative PCR 

Spectrophotometric quantification of gDNA extracts was performed using a 

NanoDrop spectrophotometer (Nanodrop, Wilmington, Delaware). All gDNA extracts 

were standardized by dilution to 10 ng/µl with DHS and stored at -20ºC until PCR 

analysis.  All diluted gDNA extracts from tissue samples collected from Trial 1 and gill 

tissue samples from Trial 2 were analyzed using qPCR assays targeting a 104-bp product 

of the H. ictaluri 18S rRNA gene (Griffin et al. 2008).  

Each 15-µl reaction consisted of 7.75µl of IQ™ Supermix (Bio-Rad, Hercules, 

California, USA), 20 pmols of each primer, 2 pmols of probe (Table 8.1), 50 ng of 

genomic DNA template and nuclease free water to volume.  Amplifications were carried 

out using a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad).  The thermal 

cycling program consisted of 95ºC for 2 minutes, followed by 40 cycles of 95ºC for 5 

seconds and a combined 60ºC annealing and extension for 10 seconds. Data collection 

was performed following the extension phase at the end of each cycle.  All amplification 

assays contained concurrently run, serial dilutions of the purified 104 bp amplification 

product.  All samples, as well as no-template negative controls were run in triplicate.  

Data were only considered valid from runs where the slope of the standard curve ranged 

from 3.1-3.6, equating to estimated reaction efficiencies between 90% and 110% (Taylor 

et al. 2010). 
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Table 8.1 Henneguya ictaluri specific primers and probe used in qPCR analysis. 

Primer ID Sequence (5’-3’) Reference 
H. ictaluri-1 CAAAAGTTTCTGCTATCATTG Whitaker et al. 2001 
H. ictaluri-2 AGCGCACAGATTACCTCA Whitaker et al. 2001 
H. ictaluri 
TaqMan probe [FAM]-TCAGCCTTGATGTTGCCACCTCA-[BHQ1] Griffin et al. 2008 

 
FAM, 6-carboxyfluorescein; BHQ1, Black Hole Quencher-1. 

8.3.5 Statistical analysis 

All statistical analyses were performed in SAS version 9.4 (SAS Institute Inc., 

Cary, North Carolina). Prior to statistical analyses, the estimated quantity of H. ictaluri 

DNA was subjected to a log (x+1) transformation.  Data was not normally distributed on 

account of several samples being negative for H. ictaluri by qPCR and having values of 

0.0. As such, the Kruskal-Wallis one-way analysis of variance was applied to 

nonparametric data to compare the mean log starting quantity of H. ictaluri DNA 

between channel catfish, blue catfish, hybrid catfish, and the naïve control groups at each 

week.  The Steel-Dwass-Critchlow-Fligner test was employed to determine significance 

between groups (α<0.05).  Significant differences in the proportions of channel catfish 

with grossly visible cysts versus hybrid catfish with grossly visible cysts during Week 6– 

Week 14 of Trial 2 was tested using the N-1 Chi-squared test.  

8.4 Results 

8.4.1 Trial 1 

8.4.1.1 Gill tissue 

Henneguya ictaluri DNA was detected in the gill tissue of all channel and hybrid 

catfish sampled at Week 1. In channel catfish H. ictaluri DNA was detected in the gills 

(log starting quantity [copy number]±standard error; range, 5.84±0.11; 5.76–6.06) and 
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also in hybrid catfish (4.97±1.13; 3.30–6.27), but were not significant (P=0.68). No H. 

ictaluri DNA was detected in the gills of any blue catfish or control fish at Week 1. By 

Week 2 channel catfish gill tissue had significantly higher (P=0.02) levels of detectable 

H. ictaluri DNA (6.25±0.26; 5.56–7.03) compared to hybrid catfish (3.45±0.08; 3.20–

3.70).  Continually at Week 3 and Week 4, detectable levels of H. ictaluri DNA in 

channel and hybrid catfish gills declined, but remained significantly lower in hybrid than 

channels (Week 3, P=0.02; Week 4, P=0.01).  By Week 4, H. ictaluri DNA was only 

detectable in a single hybrid catfish, while 100% of channel catfish sampled remained 

positive. Similarly, at Week 8, H. ictaluri DNA was detectable in only a single hybrid 

catfish compared to 67% (4/6) of channel catfish (P=0.20).  At Week 9, H. ictaluri DNA 

was detected in only a single channel catfish and no hybrid catfish.  Beginning at Week 

10, there was an increase in H. ictaluri DNA in channel catfish gills (0.87±0.54; 0.0–

2.43), peaking at Week 11 (1.71±0.76; 0.0–4.56) before dropping at Week 12 (1.09±0.69; 

0.0–3.52). There was no detectable H. ictaluri in hybrid gill tissue after Week 9. 

Throughout Trial 1 there was no amplification of H. ictaluri DNA observed in control or 

blue catfish tissue extracts (Figure 8.1). 
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Figure 8.1 Line graph of plotted mean log starting quantities of H. ictaluri DNA 
detected in gill tissue for Trial 1. 

Values are plotted as the mean (± standard error). No data for Weeks 5–Week 7 post 
exposure. Superscripts denote statistical significance between groups at each respective 
time point; a,channel vs hybrid; b,channel vs blue; c,channel vs controls; d,hybrid vs 
blue; e,hybrid vs controls; f,blues vs controls. 

Gill clip wet mounts revealed areas of chondrolytic lesions consistent with PGD 

in both channel catfish and hybrid catfish (Figure 8.2) at Week 1.  Channel catfish had a 

higher incidence of cartilage breaks (50%; 3/6) compared to hybrid catfish (33%; 2/6) at 

Week 1.  Similarly, at Week 2 more channel catfish (67%; 4/6) had breaks in the 

filamental cartilage than hybrid catfish (17%; 1/6).  No breaks or developing pseudocysts 

were observed on gill clip wet mounts at Week 8, but pseudocysts were observed at 

Week 9 and Week 10 in 33% (2/6) of channel catfish examined.  At Week 11, no 

pseudocysts were observed in gill clip wet mounts of any fish examined. Finally, at Week 

12, 17% (1/6) of channel catfish examined had pseudocysts evident in the gills. 
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Pseudocysts containing mature myxospores were not observed in the gills of any hybrid 

catfish, blue catfish or controls. 

 

Figure 8.2 Gill clip wet mounts at Week1 post exposure for Trial 1. 

Channel catfish (A) and hybrid catfish (B) gill filaments with chondrolytic lesions/breaks 
(arrow heads) consistent with acute PGD. Scale bar= 500 µm. 
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Histologically, inflammatory changes consistent with PGD were observed in the 

gills of channels and hybrid catfish (Figure 8.3A) and developing multinucleated 

basophilic plasmodia were evident in areas of chondrolysis and surrounding 

granulomatous inflammation (Figure 8.3B). The timeline of development is consistent 

with previous experimental studies of H. ictaluri infections where developing plasmodia 

were observed at 7 days post exposure (Pote et al. 2000; Wise et al. 2008; Griffin et al. 

2010; Pote et al. 2012).  By Week 2 inflammation was still present in gill tissue of 

channel and hybrid catfish, but there was evidence of recovery as callus formation was 

observed in areas where chondrolytic breaks occurred (Figure 8.4).  Beginning at Week 8 

(Figure 8.5A, B) developing Henneguya pseudocysts in the gills were observed in 

channel catfish.  Moving forward, pseudocysts containing myxospores were seen 

continually in channel catfish (Figures 8.5C, D and Figure 8.6) until Week 12 when 

myxospores were no longer evident.  Myxozoan plasmodia were not observed in any blue 

catfish, hybrid catfish or naïve controls throughout Trial 1. Similarly, no pseudocysts 

were observed grossly in any blue catfish, hybrid catfish or naïve controls throughout the 

trial. 
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Figure 8.3 Gill histological changes at Week 1 post exposure for Trial 1. 

Example of granulomatous inflammatory response at Week1 post exposure 
demonstrating multifocal areas of epithelial hyperplasia with occlusion of the lamellar 
troughs and thickening of the respiratory surfaces (A) and developing plasmodia (B; 
arrow heads) in areas of chondrolysis in the same channel catfish. Giemsa stain; bar in 
A= 200 µm, bar in B= 100 µm. 
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Figure 8.4 Gill histological changes at Week 2 post exposure for Trial 1. 

Callus formation where previously a break in the filamental cartilage was located in the 
gill of a channel catfish. Giemsa stain; bar= 100 µm. 
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Figure 8.5 Gill histological changes at Week 8 and Week 9 post exposure for Trial 1. 

Photomicrographs of channel catfish gill tissue demonstrating Henneguya pseudocysts at 
Week 8 (A & B) and Week 9 (C & D). Giemsa stain; bars=100 µm. 



www.manaraa.com

 

189 

 

Figure 8.6 Gill histological changes at Week 10 and Week 11 post exposure for Trial 
1. 

Photomicrographs of channel catfish gill tissue demonstrating Henneguya pseudocysts at 
Week 10 (A & B) and Week 11 (C & D). H & E (A). Giemsa stain (B–D); Bars (A–C)= 
100 µm. Bar (D)= 50 µm. 

8.4.1.2 Non-gill tissue 

Throughout Trial 1 there were no blood tissue extracts with detectable H. ictaluri 

DNA in any fish. Although Griffin et al. (2010) and Beecham et al. (2010) were able to 

detect H. ictaluri in blood and gill tissue of channel, blue, and hybrid catfish, their 

challenge models consisted of continuous in-pond exposures where fish were not 

removed from the source of infection until sampling. Therefore, it is likely that 
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circulating H. ictaluri stages were still present in the blood of these fish and detectable by 

PCR, but further work is needed to clarify this and investigate blood stages of H. ictaluri.  

For brain, heart and stomach tissue extracts H. ictaluri DNA was detected in only 

channel catfish and hybrid catfish tissues during the acute stages of infection (Week 1–

Week 2), but was undetectable in these tissues by Week 4 and was no longer detectable 

until the end of Trial 1 (Figure 8.7). No histologic lesions or parasite development was 

observed in the brain, heart, or stomach of any fish throughout Trial 1. 
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Figure 8.7 Line graph of plotted mean log starting quantities of H. ictaluri DNA 
detected in brain, heart and stomachl tissue for Trial 1. 

Values are plotted as the mean (± standard error). No data for Weeks 5–Week 7 post 
exposure. Superscripts denote statistical significance between groups at each respective 
time point; a,channel vs hybrid; b,channel vs blue; c,channel vs controls; d,hybrid vs 
blue; e,hybrid vs controls; f,blues vs controls. 
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For anterior kidney, posterior kidney, spleen, and liver tissue extracts H. ictaluri 

DNA was detected during Week 1– Week 4 at varying levels, but was at undetectable 

levels following Week 4. However at Week 11, H. ictaluri DNA was detected in the 

anterior kidney, posterior kidney, spleen, and liver of only channel catfish at Week 11 

(Figure 8.8). 
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Figure 8.8 Line graph of plotted mean log starting quantities of H. ictaluri DNA 
detected in anterior kidney, posterior kidney, spleen and liver tissue for 
Trial 1. 

Values are plotted as the mean (± standard error). No data for Weeks 5–Week 7 post 
exposure. Superscripts denote statistical significance between groups at each respective 
time point; a,channel vs hybrid; b,channel vs blue; c,channel vs controls; d,hybrid vs 
blue; e,hybrid vs controls; f,blues vs controls. 
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Histologically, no developing organisms or significant changes were observed in 

the anterior kidney and spleen for any fish throughout Trial 1. Developing multinucleated 

plasmodia were observed at Week 2 in sections of posterior kidney from channel catfish 

exposed to infectious pond water (Figure 8.8), although at present it is unknown if these 

plasmodia are H. ictaluri or another ictalurid infecting myxozoan introduced with the 

infectious pond water.  No other significant changes were observed in the sections of 

posterior kidney tissue for any group. 

 

Figure 8.9 Posterior kidney histological changes at Week 2 post exposure for Trial 1. 

Suspect organisms (arrows) developing in the posterior kidney of a channel catfish at 
Week 2 post exposure. Bar= 50 µm. 

Histologically, at Week 2 several developing plasmodia (Figure 8.14) were 

observed in sections of the liver of channel catfish. Similar to the stages seen in the 

posterior kidney, although H. ictaluri DNA was detected, verification of these stages 
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observed as H. ictaluri requires further study. No other significant changes were observed 

in the sections of liver tissue of any group. 

 

Figure 8.10 Liver histological changes at Week 2 post exposure for Trial 1. 

Suspect organisms developing in the liver of a channel catfish at Week 2 post exposure. 
Bars (A–B)= 50 µm. 

8.4.2 Trial 2 

At Week 1, channel catfish had higher detectable levels of H. ictaluri DNA 

(2.59±0.85;0.0–4.88) compared to hybrid catfish (0.84±1.08;0.0–2.64), but was not 

significant (P=0.32). Continuing to Week 9 channel catfish had higher levels of H. 

ictaluri DNA when compared to hybrids, which at Week 9 had no detectable H. ictaluri 

DNA (Figure 8.11). However, at Week 11, a single hybrid catfish (17%; 1/6) had 

detectable H. ictaluri DNA, and there were no significant difference between channel and 

hybrid catfish (P=0.28). At Week 13 levels of H. ictaluri DNA detected in hybrid and 

channel catfish were low, with no hybrid catfish having detectable H. ictaluri DNA and 

only a single channel catfish (17% 1/6) positive by qPCR. This is likely due to the 

uneven distribution of pseudocysts in gill filaments taken for qPCR in the channel catfish 
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sampled. By Week 14 H. ictaluri DNA was detectable in 83% (5/6) of channel catfish 

sampled and 17% (1/6) hybrid catfish sampled. Although not significant (P=0.09), 

channel catfish (3.02±0.77; 0.0–5.15) had higher levels of H. ictaluri DNA when 

compared to hybrid catfish (0.38±0.38; 0.0–2.26) at Week 14. 

 

Figure 8.11 Line graph of plotted mean log starting quantities of H. ictaluri DNA 
detected in gill tissue for Trial 2. 

Values are plotted as the mean (± standard error). No data for Weeks 5–Week 7 post 
exposure. Superscripts denote statistical significance between groups at each respective 
time point; a,channel vs hybrid; b,channel vs blue; c,channel vs controls; d,hybrid vs 
blue; e,hybrid vs controls; f,blues vs controls. 

Gill clip wet mounts were taken each week from the same fish used for qPCR 

detection of H. ictaluri. At Week 1, 50% (3/6) channel catfish had minor breaks in the 

cartilaginous aspect of the gill filaments compared to 33% (2/6) of hybrid catfish 

sampled. Similarly, at Week 2, more channel catfish (50%; 3/6) sampled had breaks 
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indicative of PGD compared to hybrids (17%; 1/6). Cartilage breaks were not observed in 

gill clip wet mounts of any catfish from Week 3–Week 5. However, beginning at Week 6 

evidence of myxospore development was observed in a single channel catfish where one 

pseudocyst was observed on gill clip wet mounts (Figure 8.12). The pseudocyst was 

small and of the interlamellar epithelial type as defined by Molnár (2002) and contained 

numerous developing Henneguya myxospores. Similarly, at Week 7 a single channel 

catfish had pseudocysts present in the gills. By Week 8, 33% of channel catfish examined 

had pseudocysts developing in the gills, which were larger in size and more numerous 

than in previous weeks (Figure 8.12). Continually, pseudocysts were observed in 33% of 

channel catfish gill clip wet mounts from Week 9–Week 11 (Figure 8.13). At Week 12, 

50% of channel catfish had developing pseudocysts (Figure 8.19). At Week 13 a single 

channel catfish had pseudocysts, while at Week 14 33% of channel catfish examined had 

pseudocysts in the gills (Figure 8.14). No pseudocysts were detected in any gill clip wet 

mounts of hybrid catfish examined throughout Trial 2. No breaks in the filamental 

cartilage or pseudocyst were observed in any blue catfish or control fish throughout Trial 

2.  The proportion of plasmodia detected in channel catfish was significantly greater than 

in hybrid catfish from the time of appearance of plasmodia at Week 6 until the end of the 

trial at Week 14 (p<0.0001). 
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Figure 8.12 Gill clip wet mounts from channel catfish at Week 6 and Week 8 post 
exposure for Trial 2. 

Photomicrographs of channel catfish gill filaments with Henneguya pseudocysts 
(arrowheads) at Week 6 (A–B) and Week 8 (C–D) post exposure. Bar (A & C)= 500µm. 
Bar (B)= 50 µm. Bar (D)= 200 µm. 
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Figure 8.13 Gill clip wet mounts from channel catfish at Week 8–Week 11 post 
exposure for Trial 2. 

Photomicrographs of channel catfish gill filaments with Henneguya pseudocysts 
(arrowheads) at Week 8 (A), Week 9 (B), Week 10 (C), and Week 11 post exposure. Bar 
(A–C) = 1 mm. Bar (D)= 500 µm. Hemorrhage in B and D. 
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Figure 8.14 Gill clip wet mounts from channel catfish at Week 12 and Week 14 post 
exposure for Trial 2. 

Photomicrographs of channel catfish gill filaments with Henneguya pseudocysts 
(arrowheads) at Week 12 (A) and Week 14 (B) post exposure. Bar (A–B) = 500 µm. 

Histologically, evidence of PGD infection at Week 1 was characterized by mild to 

moderate mononuclear, multifocal, and proliferative branchitis, with only a single (17%; 

1/6) channel catfish having developing plasmodia.  Similarly, two hybrid catfish (33%; 

2/6) had lesions resembling PGD, but no developing plasmodia were evident. Although 

minor nonspecific inflammatory changes were noted in the gills of some fish, no 

developing plasmodia or pseudocysts were observed at Week 2.  At Week 3 evidence of 

recovery (callus formation) was seen in two channel catfish, but no plasmodia or 

developing pseudocysts were evident.  Changes were unremarkable from Week 4–5, but 

starting at Week 6 Henneguya pseudocysts were seen in a single channel catfish (Figure 

8.15), consistent with wet-mount observations. Additionally, callus formation was noted 

in two other channel catfish at Week 6.  At Week 7, no pseudocysts were observed in any 

fish examined.  By Week 8, 25% (3/12) of the channel catfish examined histologically 

possessed developing pseudocysts in the gills (Figure 8.21), which were larger and more 
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numerous than previous weeks, in line with wet-mount observations.  Pseudocysts were 

interlamellar epithelial type, consistent with those observed in earlier weeks.  By Week 9, 

Henneguya pseudocysts were evident in 50% (6/12) of channel catfish examined (Figure 

8.16), a trend which continued at Week 10 and Week 11, where pseudocysts were seen in 

42% (5/12) and 58% (7/12) of channel catfish examined, respectively (Figure 8.17). 

While fewer channel catfish (25%; 3/12) had developing pseudocysts at Week 12 (Figure 

8.23), at Week 13, 50% of channel catfish examined had pseudocysts present in the gill 

tissue (Figure 8.18) suggesting the decline in pseudocyst prevalence at Week 12 may 

simply be a function of sectioning. At Week 14, at least one pseudocyst was observed in 

92% (11/12) of channel catfish examined histologically.  Week 14, Trial 2 was the first 

time any pseudocysts were observed in hybrid catfish (17%; 2/12) (Figure 8.19). Week 

14 was also characterized by the highest number of channel catfish with pseudocysts as 

well as the most pseudocysts per fish. While pseudocysts were observed in two hybrid 

catfish at Week 14, these pseudocysts were considerably smaller and fewer in number 

compared to channel catfish.  No plasmodia or pseudocysts were observed in any of the 

blue catfish or control catfish. 
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Figure 8.15 Gill histopathological changes at Week 6 post exposure for Trial 2 

Photomicrographs of channel catfish gill tissue demonstrating Henneguya pseudocysts at 
Week 6 (A & B) post exposure. Giemsa stain. Bars (A–B) = 50 µm. 
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Figure 8.16 Gill histopathological changes at Week 8 and Week 9 post exposure for 
Trial 2. 

Photomicrographs of channel catfish gill tissue demonstrating Henneguya pseudocysts at 
Week 8 (A & B) and Week 9 (C & D) post exposure. Giemsa stain. Bars (A)= 200 µm. 
Bars (B–D) = 100 µm. 
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Figure 8.17 Gill histopathological changes at Week 10 and Week 11 post exposure for 
Trial 2. 

Photomicrographs of channel catfish gill tissue demonstrating Henneguya pseudocysts at 
Week 12 (A & B) and Week 13 (C & D) post exposure. Giemsa stain. Bars (A & C) = 
200 µm. Bars (B & D) = 100 µm. 
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Figure 8.18 Gill histological changes at Week 12 and Week 13 post exposure for Trial 
2. 

Photomicrographs of channel catfish gill tissue demonstrating Henneguya pseudocysts at 
Week 12 (A & B) and Week 13 (C & D) post exposure. Giemsa stain. Bar (A) = 500 µm. 
Bars (B–D) = 100 µm. 



www.manaraa.com

 

206 

 

Figure 8.19 Gill histological changes at Week 14 post exposure for Trial 2. 

Photomicrographs of channel catfish gill tissue demonstrating Henneguya pseudocysts 
(arrows) (A & B) and hybrid catfish (C & D) at Week 14 post exposure. Giemsa stain. 
Bar (A) = 500 µm. Bars (B–D) = 100 µm. 

8.5 Discussion 

The development of Henneguya ictaluri in channel catfish, blue catfish, and their 

hybrid cross was investigated in two separate infectivity trials, wherein parasite 

development was carried to completion in the fish host. In Trial 1, early developmental 

stages were observed in both channel and hybrid catfish exposed to infectious pond water 

containing H. ictaluri actinospores.  Acute stages of infection were similar among 

channel catfish and hybrid catfish, with developing plasmodia detectable in the gills of 
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both channel and hybrid catfish at 7 days post-challenge (Week 1).  Moreover, callus 

formation was observed in both fish groups in later weeks.  In Trial 1, channel catfish 

consistently carried significantly higher amounts of detectable H. ictaluri DNA in most 

tissues examined during the first two weeks. In line with previous studies, gill tissue was 

the predominant predilection site for H. ictaluri DNA and myxozoan life stages as 

detected by qPCR and microscopic observation.   

Results from Trial 1 and 2 are congruous with previous studies focusing on the 

acute stages of PGD in channel, blue, and hybrid catfish where blue catfish incurred 

fewer PGD related lesions and H. ictaluri DNA was less prevalent in blue and hybrid 

catfish gill tissues compared to channel catfish (Bosworth et al. 2003; Beecham et al. 

2010; Griffin et al. 2010).  Throughout Trial 1 and Trial 2, blue catfish had no lesions 

associated with PGD or detectable levels of H. ictaluri DNA by qPCR.  Previous studies 

where H. ictaluri has been detected microscopically or by qPCR in blue catfish have 

involved catfish housed in net cages in ponds with active PGD outbreaks in the resident 

fish population resulting in significantly higher exposure doses than were achieved in this 

study (Bosworth et al. 2003; Beecham et al. 2010; Griffin et al. 2010). 

Trials 1 and 2 had conflicting results in regards to the development of pseudocysts 

in hybrid catfish. In Trial 1 no H. ictaluri DNA was detectable in hybrid catfish past 

Week 8 and no evidence of pseudocyst development was observed in any hybrid catfish 

by gill clip wet mounts or histology. However, in Trial 2 at Week 14 post exposure, 2/12 

hybrid catfish examined had a single developing pseudocyst observed histologically and 

1/6 hybrid catfish was positive by qPCR.  Although H. ictaluri DNA was detected, 

verification of these gross stages as H. ictaluri requires further study since it is likely 
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infectious pond water also contained myxozoan actinospores other than H. ictaluri.  

Similarly, the identity of the pseudocysts observed histologically is inconclusive as other 

myxozoan actinospore stages could likely have been introduced during the exposure.  

However, molecular evidence, based on qPCR amplification of H. ictaluri DNA, points 

to the possible presence of H. ictaluri pseudocysts in at least one hybrid catfish at Week 

14 in Trial 2.  Development of in situ hybridization protocols specific to H. ictaluri and 

other known myxozoans from catfish aquaculture would likely clarify this point. 

During early stages of infection, H. ictaluri appears to be systemic throughout 

numerous organs with detectable levels of H. ictaluri DNA by qPCR in the brain, heart, 

anterior and posterior kidneys, spleen, liver, and stomach.  However, only the posterior 

kidney and liver had visible developing myxozoan-like stages by histology.  The 

confirmation of these as H. ictaluri remains in question.  A previous study provides 

evidence of H. ictaluri stages in multiple organ systems of channel catfish as detected by 

indirect fluorescent antibody tests using polyclonal antibodies against the actinospore 

stage of H. ictaluri (Belem and Pote 2001).  In addition to the gills, Belem and Pote 

(2001) observed fluorescent inclusions in the stomach, heart, liver, spleen, anterior 

kidney, posterior kidney, and intestine of channel catfish at 24 hours post exposure to 

pure H. ictaluri actinospores collected from Dero digitata.  By 72 hours post-exposure, a 

marked decrease in fluorescence was observed in all tissues except the gills, which at this 

point possessed distinct nuclei visible in developing multinucleated plasmodia (Belem 

and Pote 2001).  Their results coincide with the qPCR data herein, suggesting the 

systemic nature of the acute stages of infection, especially during the first week of 

development.  For most tissues, besides gill tissue, no H. ictaluri DNA was detected past 
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Week 4, however, anterior kidney, posterior kidney, spleen, and liver were positive for H. 

ictaluri DNA in channel catfish tissue extracts at Week 11. The significance of this is 

unclear, but could suggest development of H. ictaluri, but no putative myxozoan stages 

were seen in these tissues at Week 11. 

In regards to suspected myxozoan development in posterior kidney and liver 

tissues at Week 2, other Henneguya spp. have been reported from these tissues and could 

likely have been introduced during exposure to infectious pond water and explain the 

developing stages observed in these tissue during Trial 1.  Henneguya diversis was 

reported from the kidney, liver, skin, and fins of channel catfish collected from a 

commercial catfish farm in Alabama (Minchew 1977).  Additionally, Henneguya exilis 

has been reported developing in the posterior kidney of farm raised channel catfish in 

Mississippi (Matt Griffin, personal communication).  However, no pseudocysts or 

myxospores were observed in any organ other than the gills in Trial 1. 

Pseudocysts of H. ictaluri have previously been studied in experimentally 

infected channel catfish (Pote et al. 2000).  Interlamellar pseudocysts were observed in 

the gills of a single channel catfish at 3 months post-exposure (Pote et al. 2000).  Gill 

pseudocysts observed in Trial 1 and Trial 2 of this study were similar in size, shape and 

location as described by Pote et al. (2000).  In Trial 2, interlamellar pseudocysts were 

observed in the gills of channel catfish as early as Week 6 (42 days) post exposure and 

were present in 36% (58/162) of channels from Week 6–14.  Comparatively, Henneguya 

spp. pseudocysts were observed in only two hybrid catfish at Week 14 (98 days post-

exposure). 
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The propagation of a refractory fish species to minimize losses to myxozoan 

infections in aquaculture and fisheries management is not a novel concept.  In salmonid 

fisheries in the Pacific Northwest, management of Ceratonova (Ceratomyxa) shasta 

through breeding of resistant salmonid species is a widely accepted practice 

(Bartholomew 1998).  In a controlled study of host susceptibility to C. shasta, Zinn et al. 

(1977) found varying degrees of susceptibility among the nine salmonid species 

investigated, with brook trout Salvelinus fontinalis, cutthroat trout Oncorhynchus clarkii, 

rainbow trout Oncorhynchus mykiss, and fall Chinook salmon Oncorhynchus tshawytscha 

being most susceptible.  Coho salmon Oncorhynchus kistuch were considered moderately 

resistant and exhibited lower percent mortality.  Brown trout Salmo trutta, Atlantic 

salmon Salmo salar, sockeye salmon Oncorhynchus nerka and spring Chinook salmon 

had the lowest measured mortalities (Zinn et al. 1977).  Bjork and Bartholomew 

compared the dose effects of C. shasta to susceptible rainbow trout and more resistant 

Chinook and coho salmon (2009).  In the highly susceptible rainbow trout, a single 

actinospore was capable of causing death of the host (Bjork and Bartholomew 2009).  In 

addition to varying degrees of inherent resistance based on the fish host, there is evidence 

for multiple genotypes of C. shasta resulting in varied degrees of mortality (Hurst and 

Bartholomew 2012).  Investigation into the diversity of H. ictaluri genotypes existing in 

catfish aquaculture in the Southeastern United States has not been examined.   

Similar levels of host specificity have been demonstrated for M. cerebralis, the 

causative agent of whirling disease in salmonids.  El-Matbouli et al. (1999) exposed a 

panel of non-salmonid fish, such as goldfish Carassius auratus, carp Cyprinus carpio, 

common nase Chondrostoma nasus, medaka Oryzias latipes, guppy Poecilia reticulate, 
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the amphibian tadpole Rana pipiens and rainbow trout to M. cerebralis triactinomyxons 

(TAMs).  Their findings indicated a specificity for salmonids.  Moreover, Hedrick et al. 

(1999a) demonstrated discrete differences between susceptibility of rainbow trout and 

brown trout Salmo salar to M. cerebralis infection.  The prevalence of infection, 

myxospore numbers, and severity of M. cerebralis associated lesions were dramatically 

reduced in brown trout compared to rainbow trout.  More importantly, exposing rainbow 

trout to as few as 10 M. cerebralis TAMs initiated infection, while only exposure doses 

exceeding 100 TAMs were successful in establishing infection in brown trout.  Similar 

work identified Chinook salmon, westslope cutthroat trout O. clarki lewisi, Yellowstone 

cutthroat trout O. clarki bouvieri, and bull trout Salvelinus confluentus all demonstrate 

varying degrees of susceptibility to M. cerebralis infections (Hedrick et al. 1999b; 2001), 

and even resistant salmonid strains have been identified (Schisler et al. 2006). 

In addition to the variations in vulnerability to myxozoan infections among 

closely related fish hosts, there is evidence of variations in susceptibility among different 

genetic lineages of the oligochaetes.  In one study, Tubifex tubifex populations from 2 

different sites consisted of 4 genetically distinct lineages that varied with respect to their 

susceptibility to experimental exposure with Myxobolus cerebralis.  Two genetic lineages 

were highly susceptible, while others were largely refractory (Beauchamp et al. 2002).  

Similarly, Arsan et al. (2007) found variation in susceptibility to Myxobolus cerebralis 

infection in 4 different genetic lineages of Tubifex tubifex worms from Alaska.  These 

studies suggest certain habitats are conducive to large and more homogenous populations 

of various oligochaete lineages, which could have dramatic impacts on myxozoan 

infections in native fish species.  There has been little investigation into the possibility of 
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multiple genetic lineages of the oligochaete D. digitata or if varying susceptibility to 

infection exists, but similar studies are likely warranted. 

From an aquaculture management perspective, the importance of the work 

described herein cannot be overstated.  PGD related losses are a seasonal occurrence 

primarily during the spring when water temperatures are ideal for the propagation of the 

oligochaete host D digitata.  In some cases, outbreaks can result in tramatic mortality 

events, sometimes reaching 100% (Bowser and Conroy 1985; Wise et al. 2004).  

Moreover, research has demonstrated that H. ictaluri is present at some level in nearly all 

catfish ponds from March through May (Wise et al. 2004).  While the direct economic 

impact is difficult to determine, it is estimated to be in the millions of dollars on account 

of lost feed days and mortality.  In addition to these losses, the impact PGD has on 

increasing susceptibility to secondary infection with other important pathogens, mainly E. 

ictaluri which often overlaps with the PGD season, has not been carefully examined and 

warrants further study.  In the absence of economically viable control or 

chemotherapeutic methods, PGD is still an annual problem for producers. 

Based on two controlled infection studies, hybrid catfish appear to be less suitable 

hosts for H. ictaluri.  No pseudocysts were detected by twelve weeks post-exposure in 

Trial 1, while only two pseudocysts, each in separate fish, were detected at fourteen 

weeks post-exposure in Trial 2.  Meanwhile robust numbers of myxozoan pseudocysts 

were evident in channel catfish cohorts.  Moreover, limited H. ictaluri DNA was 

detectable in hybrid catfish when compared to channel catfish during late stages of 

infection (Weeks 8–14).  Based on growing experimental evidence from these and other 

studies, the production of hybrid catfish has the potential to dramatically reduce the 
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economic burden of PGD on commercial catfish production in the southeastern United 

States.  It is hypothesized that continuous production of hybrid catfish, or at the least 

occasional crop rotations, would reduce H. ictaluri in production systems to tolerable 

levels, or at a minimum, to levels below that which cause catastrophic losses or parasite 

induced inappetence.   

This work supports anecdotal reports from the catfish industry supporting this 

hypothesis suggesting that PGD is limited in ponds devoted to hybrid production, and the 

number of PGD related diagnostic case submissions to the Aquatic Research and 

Diagnostic Laboratory in Stoneville, MS, suggests that incidence and severity of PGD on 

catfish operations raising hybrids is greatly reduced.  That said, field studies investigating 

this aspect of catfish aquaculture are needed to verify these claims. 
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CHAPTER IX 

CONCLUSION 

Myxozoans are common parasites of fish species worldwide, but are especially 

problematic for fish intensively cultured, where levels of infection may reach clinical 

significance.  Proliferative gill disease of channel and hybrid catfish caused by 

Henneguya ictaluri is a continuous burden to the catfish aquaculture industry primarily in 

the southeastern United States. With no effective method of control or treatment, 

management strategies aimed at reducing the impacts of PGD on production have 

targeted biological control measures to break the parasite life cycle.  In addition to H. 

ictaluri, the presence of other species of myxozoans present within these closed 

aquaculture systems suggests that the impacts of myxozoan infections on catfish health 

may not be limited to a single species. 

The survey of actinospore stages infecting the ubiquitous oligochaete host Dero 

digitata in catfish ponds demonstrated an unexpected diversity of myxozoan species, with 

at least four distinct collective groups of actinospore types representing six distinct 

species.  Many of which represent currently undocumented life cycles.  Supplementing 

the morphologic data of myxozoan actinospores with molecular data aids in the 

completion of parasite life cycles when the myxospore counterpart is discovered and 

characterized.  More intriguingly, given that host family is a strong phylogenetic signal 
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for the Myxobolidae, on the occasion the fish host of a newly discovered actinospore is 

unknown, phylogenetic analysis can offer suggestions as to the likely fish host.  

There is also tremendous diversity among myxozoan species in the catfish host, 

with three novel species being described throughout this work.  One of which, 

Henneguya mississippiensis, was united with the aurantiactinomyxon actinospore stage of 

the life cycle and represents the fourth life-cycle of any Henneguya spp. worldwide.  A 

second Henneguya sp., Henneguya bulbosus, was characterized in the gills of channel 

catfish and the first Unicauda sp. was described from the intestinal tract of channel 

catfish, Unicauda fimbrethilae.  Moreover, this work demonstrated a surprising lack of 

tissue specificity for Henneguya exilis, traditionally a parasite of the gills, which was 

documented as the cause of tumor-like growths on the caudal peduncle of channel catfish. 

Additionally, several non-ictalurid fish species inhabit catfish production ponds, 

either in the form of polyculture or simply through incidental introduction.  Many of 

these have a unique myxozoan fauna unto themselves. Two novel Myxobolus spp., 

Myxobolus ictiobus and Myxobolus minutus, were described from the gills of smallmouth 

buffalo Ictiobus bubalus ineffectively stocked as biological control of the oligochaete D. 

digitata.  Molecular characterization and phylogenetic inference of these Henneguya 

spp., Myxobolus spp. and Unicauda sp. support previous assertions that fish host family 

is an important phylogenetic signal in the Myxobolidae.  The Henneguya spp. infecting 

ictalurid fish in the southeastern United States form a strongly supported clade, while the 

Myxobolus spp. described from smallmouth buffalo populate a growing clade of 

catostomid infecting Myxobolus spp. 
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Lastly, investigations into the host specificity and development of H. ictaluri in 

susceptible and nonsusceptible catfish hosts were performed.  Results from these 

experimental studies confirm that blue catfish are not suitable hosts for H. ictaluri, as H. 

ictaluri was not detected molecularly or histologically in blue catfish in either study.  

Channel catfish were found to be susceptible and suitable hosts with pseudocysts 

containing myxospores developing as early as 6 weeks post exposure and persisting to 

the end of the trials at 12 weeks (Trial 1) and 14 weeks (Trial 2) post exposure.  Hybrid 

catfish demonstrated an intermediate susceptibility with lower quantities of H. ictaluri 

DNA detectable in all tissues examined compared to channel catfish and no pseudocysts 

observed in hybrid catfish in Trial 1 and two pseudocysts at 14 weeks post exposure in 

Trial 2.  These results hold promise for the use of hybrid catfish as a culture species to 

reduce the burden of H. ictaluri in catfish aquaculture. 



www.manaraa.com

 

220 

 

COPYRIGHT PERMISSION 



www.manaraa.com

 

221 



www.manaraa.com

 

222 



www.manaraa.com

 

223 

 
 



www.manaraa.com

 

224 



www.manaraa.com

 

225 

 
 


	Characterization of Myxozoan Parasites Associated with Catfish Aquaculture in Mississippi with Notes on the Development of H. Ictaluri In Susceptible and Non-Susceptible Catfish Hosts
	Recommended Citation

	tmp.1625165283.pdf.DDgGK

